
PHYSICS 
IN YOUR 
KITCHEN LAB 



OrikiTti b flOMamneH jiaSopaxopnH 

O t b c t c t b g h h m h pe/iaKTop 
aKaaeMHR U . K . KHKOHH 

HanaTejibCTBO « H a y K a » , Mockh» 



Physics in Your 

Kitchen Lab 

Edited by 
Academician I.K. Kikoin 

Translated from the Russian 

by A. Zilberman 

til !\ Hi 

ypj 

Mir 

Publishers 

Moscow 



First published 1985 

Revised from the 1980 Russian edition 

E D I T O R I A L B O A R D 

Academician I . K . Kiko in (chairman), Academician 
A.N. Kolmogorov (deputy chairman), I .Sh . Slobodetskii 
(scientific secretary), Cand. Sc. (Phys.-Math.), Correspond-
ing member of the Academy of Sciences of the USSR 
A.A. Abrikosov, Academician B .K . Vainstein, Honoured 
teacher of the Russian Soviet Federative Socialist Re-
publ ic B .V. Vozdvizhenskii , Academician V.M. Glush-
kov, Academician P .L . Kapitsa, Prof. S .P. Kapi tsa , 
Corresponding member of the Academy of Sciences of the 
USSR Yu .A . Osipyan, Corresponding member of the 
Academy of Pedagogical Sciences of the USSR V .G . Ra-
zumovski i , Academician R .Z . Sagdeev, M .L . Smolyanski i , 
Cand. Sc. (Chem.), Prof. Ya .A . Smorodinski i , Academi-
cian S .L . Sobolev, Corresponding member of the Academy 
of Sciences of the USSR D . K . Phaddeev, Corresponding 
member of the Academy of Sciences of the USSR 
I .S . Shklovskii . 

Ha amjiuucKOM aaune 

(c I l ana ie j ibCTRO « H a y K a » , T j iaBHaa pef laKi jHH <J>h3hko-

MaTeMaTHiecKofi j iHTepaTypw, 1980 

English translation. Mir Publishers. 1985 



Contents 

Editor's Note 7 

A Demonstration of Weightlessness 9 

by A. Dozorov 

A Cartesian Diver 12 
by A. Vilenkin 

An Automat ic Siphon 13 

by V. Mayer and N. Nazarov 

Exercises 17 

Vortex Rings 17 

by R.W. Wood 

On Vortex Rings 23 

by S. Shabanov and V. Shubin 

Tornado Models 33 

by V. Mayer 

The Aerodynamics of Boomerangs 37 
by Felix Hess 

A Hydrodynamic Mechanism in a 
Fal l ing Test Tube 51 
by G.I. Pokrovsky 
An Instructive Experiment with a 
Cumulat ive Jet 53 

by V. Mayer 

Exercises 54 

Magic wi th Physics 56 

by V. Mayer and E. Mamaeva 

A Drop on a Ho t Surface 58 

by M. Golubev and A. Kagalenko 

Surface Tension Draws a Hyperbola 61 

by I. Vorobiev 

Experiments wi th a Spoonful of Broth 64 
by V. Mayer 

How to Grow a Crystal 71 
by M. Kliya 

Crystals Made of Spheres 74 
by G. Kosourov 

A Bubble Model of Crystal 85 
by Ya. Geguzin 



Contents 

Determining the Poles of a Magnet 99 
by B. Aleinlkov 

A Peculiar Pendulum 101 
by N. Minz 

Lissajous Figures 106 
by N. Minz 

Exercises 118 

Waves in a Flat Plate (Interference) 118 
by A. Kosourov 

How to Make a R ipp le Tank to 
Examine Wave Phenomena 128 
by C.L. Stong 

An Artificial Representation of a 
Total Solar Eclipse 140 
by R.W. Wood 

Believe I t or Not 144 
by G. Kosourov 

Colour Shadows 150 
by B. Kogan 

What Colour Is Br i l l iant Green? 152 
by E. Pal'chikov 

An Orange Sky 154 
by G. Kosourov 

The Green Red Lamp 161 
by V. Mayer 

Measuring Light Wavelength with a 
Wire 164 
by N. Rostovtsev 

Exercises 172 

Measuring Light with a Phonograph 

Record 172 

by A. Bondar 

A Ball for a Lens 177 
by G. Kosourov 



To Georgii Ivanovich 
Kosourov 

Editor's Note 

Physics is an experimental science since it 
studies the fundamental laws of nature by direct 
experimentation. The experimenter asks ques-
tions of nature in any experimental work, but 
only correctly formulated questions are answered. 
This means that unless a physical experiment is 
set up correctly, the experimenter will not get 
the desired results. An experimenter's skill, 
therefore, depends on his ability to formulate 
experiments correctly. The experimental physics 
is a fascinating science, which enables us to 
understand, explain and, sometimes, even discov-
er new phenomena in nature. The first step in 
becoming an accomplished physicist is mastering 
of the techniques of physical experimentation. 

Modern experimental physics uses very soph-
isticated and expensive apparatus, housed, for 
the most part, in large research institutes and 
laboratories where many of the readers of this 
book may one day conduct their own original 
research. Unti l then, however, the engaging 
experiments described in this book can be per-
formed right at home. Most of the experiments 
included here were first published separately in 
the journal Kvant. 

Just as "a picture is worth a thousand words", 
an experiment once performed is worth a thou-
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sand descriptions of one. It is recommended, 
therefore, that readers perform the experiments 
described themselves. The means for this are 
readily available, and it should soon become 
obvious that experimentation is a captivating 
pastime. The experiments presented here need 
not be confining; they may be varied and expand-
ed, providing, in this way, an opportunity for 
real scientific investigation. 

The book is dedicated to Georgii Ivanovich Ko-
sourov, one of the founding fathers of Kvant. 
Kosourov, who edited the experimental section 
of the journal in its first year of publication, 
has contributed several very interesting articles 
to this collection. Among the other authors 
of this book are a number of famous physicists, 
as well as young researchers just beginning their 
careers. We hope this book wil l fascinate not 
only students already interested in physics who 
intend to make it their lifework but also the 
friends to whom they demonstrate the experi-
ments in a laboratory made right at home. 



A Demonstration of Weightlessness 

by A. Dozorov 

The weightless state is achieved in free flight. 
A satellite in orbit, a free falling stone, and a 
man during a jump are all in a state of weight-
lessness. A weight suspended from a string weighs 
nothing in a free fall and, therefore, does not 
pull on the string. I t is easy to make a device that 
will let you "observe" weightlessness. 

Figure 1 depicts such a device schematically. 
In its 'normal' state, weight G pulls the string 

taut, and elastic plate EP bends, breaking the 
contact between terminals K\ and K2 of the 

Fig. 1 Fig. 2 
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circuit. Naturally, lamp L, connected to the 
circuit, does not light up in this case. If the 
entire device is tossed into the air, however, 
weight G becomes weightless and does not tighten 
the string. The elastic plate straightens out and 
the terminals connect, which switches on the 
lamp. The lamp is lit only when the device is in 
a weightless state. Note that this state is achieved 
both when the device is thrown up and as it 
returns to the ground. 

The adjustment screw S makes it possible to 
place the terminals so that they have a small 
clearance when the device is stationary. The 
device is fastened to the inside of a transparent 
box, as shown in Fig. 2. 

A little practical advice about construction. 
In order to provide for the use of a large-cell 
(flat) battery or a small one-cell battery, reserve 
space for the larger battery. Access to the battery 
compartment should be facilitated since battery 
may have to be replaced frequently. The battery 
can be secured to the outer surface of the device, 
and two holes for connecting wires should be 
provided in the casing. 

Any thin elastic metal strip can be used as an 
elastic plate, even one half of a safety razor 
blade (after fastening the blade to the stand, you 
will see where to co i nect the string for the weight). 

The design can be simplified further, if the 
adjustment screw and terminal K\ are combined 
and the plate functions as terminal K2 (Fig. 3). 
Figure 4 shows a design that has no adjustment 
screw at all. If you think a little, you can 
probably come up with an even simpler 
design. 
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Fig. 3 

Fig. 4 
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A Cartesian Diver 

by A. Vilenkin 

A toy ship made of paper wil l float easily, but 
if the paper gets soaked, the ship sinks. When 
the paper is dry, it traps air between its bell 
and the surface of the water. If the bell gets 
soaked and begins to disintegrate, the air escapes 
the bell and the ship sinks. But is it possible 
to make a ship whose bell alternately keeps or 
releases air, making the ship float or sink as we 
wish? I t is, indeed. The great French scholar and 
philosopher Rene Descartes was the first to make 
such a toy, now commonly called the 'Cartesian 
Diver* (from Cartesius, the Latin spelling of 
Descartes). Descartes' toy resembles our paper 
ship except that the 'Diver' compresses and 
expands the air instead of letting it in and out. 

A design of the 'Diver' is shown in Fig. 5. 
Take a mi lk bottle, a small medicine bottle and 
a rubber balloon (the balloon wil l have to be 
spoiled). Fil l the milk bottle with water almost 
to its neck. Then lower the medicine bottle into 
the water, neck down. Tilt the medicine bottle 
slightly to let some of the water in. The amount 
of water inside the smaller bottle should be regu-
lated so that the bottle floats on the surface and 
a slight push makes it sink (a straw can be used 
to blow air into the bottle while it is underwater). 
Once the medicine bottle is floating properly, 
seal the milk bottle with a piece of rubber cut 
from the balloon and fastened to the bottle with 
a thread~wound'raround the neck. 
""Press down the piece of rubber, and the 'Diver* 
will sink. Release it , and the 'Diver' will rise. 
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This is because the air inside the milk bottle is 
compressed when the piece of rubber is pushed 
in. The pressure forces water into the medicine 

bottle, which becomes heavier and sinks. As 
soon as the pressure is released, the air in the 
medicine bottle forces the extra water out, and 
the 'Diver' floats up. 

An Automatic Siphon 

by V. Mayer and N. Nazarov 

Most o you probably studied the workings of 
the siphon, the simplest device for pumping 
liquids, while still in grade school. The famous 
American physicist Robert Wood is said to have 
begun his scientific career when still a boy with 
just such a siphon. This is how W . Seabrook 

Fig. 5 
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described that first experiment in his book about 
Robert Wood. He wrote that there was an eleva-
tion over a foot high around a puddle, and every-
body knew that water would not flow uphill . Rob 
laid a hose on the ground and told one of the boys 
to seal its end with his finger. Then he started 
filling the hose with water unti l it was full. 
Already a born demonstrator at that age, Rob, 
instead of leaving his end of the hose on the 
ground, let it dangle over a high fence which 
separated the road from the ditch. Water flowed 
through the siphon. This was apparently Wood's 
first public scientific victory. 

The conventional siphon is so simple that 
almost no improvement in its design seems 
possible. Perhaps its only disadvantage is that 
it is necessary to force the air from bends in the 
siphon prior to operation. Yet even this problem 
was solved, thanks to human ingenuity. Once 
inventors had understood the shortcoming in the 
design, they removed it by the simplest possible 
means! 

To make an automatic siphon*, you will need 
a glass tube whose length is about 60 cm and 
whose inner diameter is 3-4 mm. Bend the tube 
over a flame so that it has two sections, one of 
which is about 25 cm long (Fig. 6). Carefully 
cut a small hole (1) in the shorter arm about 
33-35 mm from its end with the edge of a needle 
file (wet the file first). The area of the hole should 
not be more than 0.5-1 mm2. Take a ping-pong 

* This version of the automatic siphon, invented by 
S .D. Platonov, was described in Zavodskaya Laboratoriya, 
4, No. 6 (1935) (in Russian). 
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ball, and make a small hole in it which is then 
reamed with the file unti l the tube can be pushed 
into the ball and is held there tightly. Push the 

Fig. 6 Fig. 7 

tube into the hole unt i l its end nearly touches 
the side of the ball opposite the hole (Fig. 6). 
The tube should fit tightly in the opening. If the 
hole is too large, fill the gap with plasticine. 
Make another hole (2) close to the end of the tube 
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inside the ball. Its initial diameter should be 
about 1 mm. 

Quickly lower the arm of the siphon with the 
ball at the end into a glass of water. The tube 
will fill almost immediately with a rising col-
umn of water broken by a series of air bubbles. 
When the water reaches the bend, it will move 
down the second arm of the siphon (Fig. 7), 
and in a few moments a continuous stream of 
water will begin to flow from the end of the tube! 

If the experiment is unsuccessful at first, simply 
adjust the siphon slightly. The correct operation 
of the automatic siphon depends on the appro-
priate choice of diameters of the holes in the 
tube and the ball. Faulty positioning of the 
glass tube and the ball or an inadequate seal 
between the tube and the ball may also spoil the 
siphon operation. The second hole in the ball 
can be gradually enlarged with a needle file to 
improve the performance of the siphon. As soon 
as the siphon is operating satisfactorily, glue 
the ball to the tube. 

How does the automatic siphon work? Look at 
Fig. 6 again. When the ball is lowered into the 
glass, water floods simultaneously into opening 2 
and into the open end of the glass tube. Water 
rises in the tube at a faster rate than in the ball. 
The water rising to opening 1 in the wall of the 
tube seals the tube. As the ball floods with water, 
the air pressure inside it rises. When equilibrium 
is reached, a small air bubble is forced through 
the opening 1. The bubble cuts off a small col-
umn of water and carries it upward. The water 
that follows reseals opening 1, and the compressed 
air forces another air bubble into the tube, cut-
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t ing off another portion of water. Thus, the 
section of tube with the ball has an air/water 
mixture whose density is lower than that of 
water. Under hydrostatic pressure this mixture 
rises to the bend and flows down the second arm 
of the tube. When the ball is completely filled 
with water, pressure creates a continuous flow 
of water and the siphon begins to operate. 

EXERCISES 

Show experimentally that water floods the ball at a 
slower rate than the tube. Explain why. 
2. To be certain that the explanation of the operation of 
the siphon is correct, replace the opaque ball with a 
small glass bottle with a rubber stopper. The design of 
the setup with the bottle should be an exact replica of 
the original. The glass tube should go through the rubber 
stopper. Since the bottle is transparent, you will be able 
to see the air/water mixture forming in the tube. 

3. Determine whether the rise of the column of water 
depends on the water depth o£ the ball. 
4. Make an automatic siphon by replacing the glass tube 
with a rubber hose. 

Vortex Rings 

by R. W. Wood 

In the course of some experiments preparatory 
to a lecture on vortex rings I have introduced 
certain modifications which may be of interest 
to teachers and students of science. 

The classic vortex-box is too well known to 
require much description. Our apparatus, which 
is rather larger than those in common use, is 
a pine box measuring about a metre each way, 

* Nature, February 28, 1901, pp. 418-420. 

2-01544 
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with a circular hole 25 cms in diameter in one 

end. Two pieces of heavy rubber tubing are 

stretched diagonal ly across the opposite or open 

end, which is then covered wi th black enamel 

cloth tacked on rather loosely. The object of the 

rubber chords is to give the recoil necessary after 

the expulsion of a ring to prepare the box for 

a second discharge. Such a box wi l l project air 

vortices of great power, the slap of the ring 

Fig. 8 

against the brick wall of the lecture hal l being 

d ist inct ly audible resembling the sound of a flip 

wi th a towel. An audience can be given a v iv id 

idea of the quasi-rigidity of a fluid in rotation by 

projecting these invisible rings in rapid succes-

sion into the aud i tor ium, the impact of the 

ring on the face reminding one of a blow with 

a compact tuft of cotton. 

For rendering rings visible I have found that by 

far the best results can be obtained by conducting 

ammonia and hydrochloric acid gases into the 

box through rubber tubes leading to two flasks 

in which N H 4 O H and HG1 are boi l ing. Photo-

graphs of large rings made in this way are repro-

duced in Fig. 8, the side view being particularly 

interesting, showing the comet-like tai l formed 

by the str ipping off of the outer portions of the 
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ring by atmospheric friction as it moves forward. 

The power of the air-rings can be shown by 

directing them against a flat pasteboard box, 

stood on end at some distance from the vortex 

apparatus, the box being at once overturned or 

even driven oft 011 to the floor. A large cluster 

of burning gas jets can be extinguished by the 

impact of a ring. 

For showing the elasticity of the rings by 

bouncing one off the other, I find that the best 

p lan is to drive two in rapid succession from the 

box, the second being projected wi th a sl ight ly 

greater velocity than the first, al l experiments 

that I have made wi th twin boxes having yielded 

unsatisfactory results. 

Though the large vortices obtained wi th an 

apparatus of this description are most suitable 

for lecture purposes, I find that much more 

beautiful and symmetrical rings can be made 

wi th tobacco smoke blown from a paper or glass 

tube about 2.5 cm in diameter. I t is necessary to 

practice a l i t t le to learn just the nature and 

strength of the most suitable puff. R ings b lown 

in this way in st i l l air near a lamp or in fu l l 

sunl ight, when viewed laterally, show the spiral 

stream lines in a most beautiful manner. I have 

succeeded in photographing one of these rings 

in the following way. An instantaneous drop 

shutter was fitted to the door of a dark room and 

an arclamp focussed 011 its aperture by means of 

a large concave mirror. The shutter was a s imple 

affair, merely an a l um in i um slide operated w i th 

an elastic band, g iv ing an exposure of 1/300 of 

a second. A photographic plate was set on edge 

in the dark room in such a position that it would 

2* 
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be i l l uminated by the divergent beam coming 

from the image of the arc when the shutter was 

opened. A ruby lamp was placed in front of the 

sensitive film. As soon as a good r ing, symm trical 

in form and not moving too fast, was seen to be 

in front of the plate, a string leading to the shut-

ter was pul led and the plate i l l uminated wi th a 

dazzling flash. The ring casts a perfectly sharp 

shadow owing to the small size and distance of 

the source of l ight ; the resulting picture is repro-

duced i n Fig. 9. The ring is seen to consist of 

a layer of smoke and a layer of transparent air, 

wound up in a spiral of a dozen or more complete 

turns. 

The angular velocity of rotat ion appears to 

increase as the core of the r ing is approached, 

the inner portions being screened from friction, 

if we may use the term, by the rotat ing layers 

surrounding them. This can be very nicely shown 

by differentiating the core, forming an air ring 

with a smoke core. I f we make a smal l vortex box 

wi th a hole, say 2 cm in diameter, fill i t wi th 

smoke and push very gently against the dia-

phragm, a fat ring emerges which rotates in a very 

lazy fashion, to al l appearances. I f , however, we 

clear the air of smoke, pour in a few drops of 

ammonia and brush a l i t t le a strong HC1 around 

the lower part of the aperture, the smoke forms 
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in a th in layer around the under side of the hole. 

G iv ing the same gentle push on the d iaphragm, 

we find that the smoke goes to the core, the rest of 

the ring being invisible, the visible part of the 

vortex spinning wi th a surprisingly high velocity. 

Considerable knack is required to form these 

th in cressent-like vortices, the best results being 

usually attained after quite a number of at tempts 

have been made. A drawing of one of these 

smoke-cores is shown in Fig . 10. The actual size 

of the vortex being indicated by dotted lines, 

it is instructive as showing that the air which 

grazes the edge of the aperture goes to the core 

of the ring. The experiment does not work very 

well on a large scale, though I have had some 

success by volat i l is ing sal ammoniac around the 

upper edge of the aperture by means of a zig-zag 

iron wire heated by a current. 

By taking proper precautions we can locate 

the smoke elsewhere, forming a perfect half-ring, 

as is shown in Fig . 11, i l lustrat ing in a str iking 

Fig. 10 Fig. 11 
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manner that the existence of the ring- depends in 

no way on the presence of the smoke. The best 

way to form these half-rings is to breathe smoke 

very gently into a paper tube a l lowing it to flow 

along the bot tom, un t i l the end is reached, when 

a ring is expelled by a gentle puff. A large test 

tube wi th a hole blown in the bottom is perhaps 

preferable, since the condit ion of things inside 

can be watched. I t is easy enough to get a ring, 

one half of which is whol ly invis ible, the smoke 

ending abrupt ly at a sharply defined edge, as 

shown in Fig. 11, requires a good deal of practice. 

I have tried ful ly half-a-dozen different schemes 

for getting these half-rings on a large scale, but 

no one of them gave results worth ment ioning. 

The hot wire w i th the sal ammoniac seemed to be 

the most promising method, but I was unable to 

get the sharp cut edge which is the most striking 

feature of the small rings blown from a tube. 

I n accounting for the formation of vortex 

rings, the rotary motion is often ascribed to 

friction between the issuing air-jet and the edge 

of the aperture. I t is, however, friction with the 

exterior air that is for the most part responsible 

for the vortices. To il lustrate this point I have 

devised a vortex box in which friction with the 

edge of the aperture is e l iminated, or rather 

compensated, by making it equal over the entire 

cross-section of the issuing jet. 

The bottom of a cylindrical t in box is drilled 

wi th some 200 small holes, each about 1.7 mm 

in diameter. I f the box be filled wi th smoke and 

a sharp puff of air delivered at the open end, 

a beautiful vortex ring wi l l be thrown off from 

the cullender surface (Fig. 12). W e may even 
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cover the end of a paper tube wi th a piece of l inen 

cloth, t ight ly stretched, and blow smoke rings 

wi th i t . 

I n experimenting wi th a box provided w i th 

two circular apertures I have observed the fusion 

of two rings moving side by side into a single 

large ring. I f the rings have a high velocity of 

rotation they w i l l bounce apart, but if they are 

sluggish they wi l l uni te . A t the moment of un ion 

the form of the vortex is very unstable, being 

an extreme case of the v ibrat ing el l ipt ical r ing. 

I t at once springs from a horizontal dumb-bell 

into a vertical dumb-bell , so rapidly that the eye 

can scarcely follow the change, and then slowly 

oscillates into the circular form. Thissamephenom-

enon can be shown wi th two paper tubes held i n 

opposite corners of the mouth and nearly paral lel 

to each other. The air in the room must be as 

sti l l as possible in either case. 

On Vortex Rings 

by S. Shnbanov and V. Shubin 

Formation of the Vortex R ings 

To study vortex rings in the air under labora-

tory conditions, we used the apparatus designed 

Fig. 12 
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by Professor Tait (Fig. 13). One end of this cylin-
der, the membrane, is covered with a flexible 
material such as leather. The other end, the 
diaphragm, has a circular opening. Two flasks, 
one containing hydrochloric acid (HC1), the other 
ammonium hydroxide (NH4OH), are placed in 
the box, where they produce a thick fog (smoke) 
of ammonium chloride particles 'NH4CI). By 

tapping the membrane, we impart a certain veloc-
ity to the smoke layer close to it. As this layer 
moves forward, it compresses^the next layer, 
which, in turn, compresses the layer followinglit, 
in a chain reaction that reaches the diaphragm 
where smoke escapes through the opening and 
sets formerly still air in motion. Viscous friction 
against the edge of the opening twists the smoky 
air into a vortex ring. 

The edge of the opening is not the main factor 
in the formation of the vortex ring, however. 
We can prove this by fitting a sieve over the 
opening in the Tait's apparatus. If the edge were 

Fig. 13 Fig. 14 

Membrane Diaphragm 

HC1 N H 4 O H 
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important , many smal l vortex rings would form. 

Yet they do not. Even wi th a sieve, we st i l l 

observe a single, large vortex ring (Fig. 14). 

I f the membrane is substituted by a plunger 

that is set to mot ion , a continuous smoke jet w i l l 

appear on the edge of the opening instead of 

vortex rings. I t is essential to provide for the 

Fig. 15 Fig. 16 

intermittent outflows of smoke through the 

opening. 

Vortex rings can be produced in water using 

an ordinary pipette and ink . Let a few drops of 

ink fall from a height of 2-3 centimetres into an 

aquarium wi th very st i l l water, which has no 

convection flows. The formation of the ink rings 

wi l l be very obvious in the clear water (Fig. 15). 

The set up can be changed sl ightly, the stream 

ofj'ink can be released from a pipette submerged 

in water (Fig. 16). The vortex rings obtained 

in this case are larger. 

Vortex rings in water form simi lar ly to those 

in the air, and the behaviour of the ink in water 

is s imi lar to that of smoke in the air. I n both 

cases viscous friction plays a v i ta l role. Experi-

ments show that the analogy is complete only 

jn the first moments after the formation of tlje 
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vortex, however. As it develops further, the vor-
tex behaves differently in water and the air. 

Movement of the Environment 
Around the Vortex Rings 

What happens to the environment when a vor-
tex forms? We can answer this question with 
the right experiments. 

Place a lighted candle 2-3 metres away from 
the Tait apparatus. Now direct a smoke ring so 

that it passes the candle but misses the flame 
narrowly. The flame will either go out or flicker 
violently, proving that the movement of the 
vortex involves not only the visible part of the 
ring, but also adjacent layers of the air. 

How do these layers move? Take two pieces 
of cloth, and soak one in hydrochloric acid, and 
the other in ammonia solution. Hang them up 
about 10-15 centimetres apart. The space between 
them wil l immediately be' filled with smoke 
(ammonium chloride vapour). Now shoot a smoke 
ring from the apparatus into the vapour cloud. 
As the ring passes through the cloud, the ring 
expands while the cloud starts moving circularly. 
From this we can conclude that the air close to 
t,he vortex ring is circulating (Fig. 17). 

Fig. 17 
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A similar experiment can be set up in water. 
Put a drop of ink in a glass full of water that has 
been stirred slowly and continues to circulate. 
Let the water get still. You wil l see ink fibres 
in the water. Now put ink ring into the glass. 
When this ring passes close to the fibres, they 
twist. 

Vortex Rings in Water 

We decided to study the behaviour of vortices 
in water further. We know that a drop of ink 

Fig. 18 

placed into an aquarium from a height of 2-3 cen-
timetres will form an ink vortex ring. This ring 
soon develops into several new rings, which, in 
turn, break into other smaller rings, and so on to 
form a beautiful "temple" in the aquarium 
(Fig. 18). 
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We found that the division of the initial ring 
into secondary rings was preceded by expansions 
in the large ring itself. How this can be explained? 
Since the environment through which the ink 
ring moves is nonuniform, some of its parts move 
faster than others, some lag behind. The ink 
(which is heavier than water) tends to collect 
in the faster sections, where it forms swelling 
due to surface tension. These swellings give birth 
to new droplets. Each droplet on the initial 
vortex behaves independently, eventually produc-
ing a new vortex ring in a cycle that repeats 
several times. Interestingly, we could not deter-
mine any regularity in this cycle: the number of 
rings in the "fourth generation" was different 
in each of ten experiments. 

We also found that vortex rings require "liv-
ing" space. We tested this by placing pipes of 
different diameters in the path of rings in water. 
When the diameter of the pipe was slightly larger 
than that of the ring, the ring disintegrated 
after entering the pipe, to produce a new ring 
with a smaller diameter. When the diameter of 
the pipe was four times larger than the ring 
diameter, the ring passed through the pipe with-
out obstruction. In this case the vortex is not 
affected by external factors. 

Smoke Ring Scattering 

We conducted several experiments to study 
interaction between the smoke ring and the 
opening of different diameter. We also studied 
the relationship between the ring and a surface 
at various angles. (We called these experiments 
scattering tests.) 
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Consider a ring h i t t i ng a diaphragm whose 

aperture is smaller than the ring. Let us examine 

two cases. First, the ring may collide w i th the 

diaphragm when the forward mot ion velocity of 

the ring is perpendicular to the diaphragm plane 

and the centre of the r ing passes through the 

centre of the d iaphragm. Collision, on the other 

hand, may be off-centre if the centre of the ring 

does not al ign w i th the centre of the diaphragm. 

In the first case, the ring scatters when it hits 

the diaphragm, and a new ring with a smaller 

diameter forms on the other side of the d iaphragm. 

This smaller ring forms just as it would i n the 

Tait apparatus: the air that moves around the 

original r ing passes through the aperture and 

entrains the smoke of the scattered vortex wi th i t . 

A similar s i tuat ion can be observed when a r ing 

collides centrally w i th an aperture of equal or 

somewhat larger diameter. The effect of an off-

centre collision is even more interesting: the 

newly formed vortex emerges at an angle to the 

original direction of the mot ion (Fig. 19). Try to 

explain why. 

Now let us consider an interaction of the ring 

with a surface. Experiments show that if the 

Diaphragm Fig. 19 
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surface is perpendicular to the velocity of the 
ring, the ring spreads without losing its shape. 
This can be explained as follows. When the air 
stream inside the ring hits the surface, it produces 
a zone of elevated pressure, which forces the 
ring to expand uniformly. If the surface is at 
a slant relative to the original direction, the 
vortex recoils when colliding with it (Fig. 20). 
This phenomenon can be explained as the effect 

of elevated pressure in the space between the ring 
and the surface. 

Interaction of Rings 

The experiments with interacting rings were 
undoubtedly the most interesting. We conducted 
these experiments with rings in water and in the 
air. 

If we place a drop of ink into water from a 
height of 1-2 cm and., a second later, let another 
drop fall from 2-3 cm, two vortices moving at 
different velocities will form. The second drop 
will move faster than the first (y2 greater than i\). 
When the rings reach the same depth, they begin 
to interact with each other in one of three possible 
ways. The second ring may overtake the first 

Fig. 20 
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one wi thout touching i t (Fig. 21a). I n this situa-

tion the water currents generated by the rings 

repel one another. Some of the ink from the first 

r ing flows over to the second ring because the 

more intensive currents in the second r ing pu l l 

the ink with them. Occasionally, some of this 

(a) Ib) (c) 

Fig. 21 

ink passes through the second ring and forms 

a new, smaller r ing. The rings then begin to 

break down, and the process continues as we 

observed earlier. 

The second ring may , on the other hand , touch 

the first while overtaking it (Fig. 216). As a result, 

the more intensive flows of the second r ing 

destroy the first one. Normal ly , new smaller 

vortices emerge from the remaining ink cluster 

of the first ring. 

Final ly , the rings may collide centrally (Fig. 

21c), in which case the second ring passes 

through the first and shrinks, whereas the first 
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ring expands. As before, this is a result of the 

interaction of the water currents of both rings. 

The rings begin to break down at a later stage. 

The interaction of smoke rings in the air was 

investigated using a Tait apparatus with two 

apertures. The results of the experiments greatly 

depended on the force and durat ion of the impact 

on the membrane. I n our setup the membrane was 

struck wi th a heavy pendulum. If the distance I 

between the apertures is less than the diameter d 

Fig. 22 

of each aperture (I is less than d) the two air 

currents mix and produce a single vortex ring. 

I f d < I < 1.5d, no ring appears at al l . I n all 

other cases two rings appear. I f I is more than 4d, 

the rings do not interact. I f 1.5d < I < 4d, the 

rings converge at first, al though they occasionally 

separate again before disintegrating. The forma-

tion of an " imaginary" ring in the space between 

the rings explains this convergence (Fig. 22). 

The imaginary ring moves in the opposite direc-

tion from the planes of the real rings, which 

begin to turn toward one another and gradual ly 

move closer. 

We were not able to determine why the rings 

eventually disintegrate completely. 
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Tornado Models 

by V. Mayer 

The tornado is one of the most awesome and 

mysterious phenomena in nature. I ts power is so 

great that almost noth ing can withstand its force. 

How are tornadoes able to carry heavy objects 

over such considerable distances? How do they 

form? Modern science has yet to answer these 

and many other questions completely. 

Is it possible to s imulate a tornado in the labo-

ratory? W i t h the fol lowing two experimental 

setups, you can make a water model of a tornado 

even at home. 

1. Solder a brass-or tin-plate disc about 40 mm 

in diameter and 0.5-1 mm thick to the shaft of 

a micromotor l ike those commonly used in toy 

machines. The disc must be exactly perpendicular 

to the shaft to ensure that the disc w i l l run true. 

Use grease or mineral oil to seal the bearings of 

the shaft. The contact studs and the soldered 

wires leading to them should be protected wi th 

a plasticine layer. 

Attach a plasticine cake about 5 m m th ick to 

the bottom of a glass (or jar) about 9 cm in dia-

meter and 18 cm high. Attach the micromotor 

to i t , al lowing a clearance between the lower end 

of its shaft and the plasticine cake. The wires 

from the micromotor should be fastened to the 

inside wal l of the glass with adhesive or plasti-

cine. Fig. 23 shows the setup ready for operation. 

Fi l l the glass with water. Then pour in a layer 

of sunflower oil 1-2 cm thick. When the wires 

from the micromotor are connected to a flashlight 

3-01544 
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battery, the disc begins rotat ing and causes the 

l iqu id in the glass to circulate. This circulation 

disturbs the surface between the water and oi l , 

and a cone filled wi th the oil soon forms. The 

cone grows un t i l i t touches the disc, which then 

breaks the oil into drops, turn ing the l iqu id 

turb id . After the micromotor is shut off, the oil 

drops return to the surface where they reform 

a continuous layer. The experiment can then be 

repeated. 

Figures 24a and 24b show photographs of the 

formation of the air cone. W e modified the ex-

periment sl ight ly here by filling the glass with 

water only. 

2. An even more convincing model of a torna-

do can be constructed by soldering a piece of 

copper wire (or a kn i t t ing needle) about 25 cm 

in length and 2 mm in diameter to the shaft of 

a micromotor. Solder a rectangular brass or t in 

plate about 0.5 X 10 X 25 mm in size at right 

Fig. 23 
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angles to the wire (Fig. 25a). Switch on the motor 

to check the operation of this stirrer. I f necessary, 

straighten its extended shaft (the wire) to mini-

mize wobbl ing. 

Lower the stirrer vertically into a glass of wa-

ter 15-20 cm in diameter and 25-30 cm high. 

Switch on the motor. A cotie wil l grow gradual ly 

on j the water surface to form a tornado that ex-

tends to the rotat ing plate (Fig. 256, c, d). As 

the tornado touches the plate, many air bubbles 

appear, signifying a vortex around the plate. If 

you hold the motor in your hand, the tornado 

wil l behave very much like a l iv ing creature. 

You can spend hours watching its "predatory" 

surges. 

Continue the experiment by placing a wooden 

block on the water surface. The block wi l l be 

sucked in by the tornado. Try to adjust the rota-

tion speed of the stirrer so that the block remains 

underwater at the same depth for a long t ime. 

3* 
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The tornado wil l suck, in bodies lying ]on the 

bottom of the glass before the stirrer is switched 

on if their density is greater than that of water 

(which is not true of the wooden block). 

A l ign the shaft of the motor wi th the axis of 

the glass. You wi l l see a cone moving down the 

shaft and air bubbles which mark its continua-

tion under the plate (Fig. 25e). I f you place some 

well washed river sand on the bottom of the 
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glass, you wi l l be able to observe the structure 

of the tornado under the plate. 

These experiments show that tornadoes are 

always caused by a vortex in a l i qu id or gas. 

The Aerodynamics of Boomerangs * 

by Felix Hess 

Imagine throwing a piece of wood into the air, 

making it fly around in a large circle and hav ing 

it come to rest gently at your feet. Preposterous! 

Ye t of course this is exactly what a boomerang 

does, provided that i t has the right shape and is 

thrown properly. 

'As is well known, boomerangs originated among 

the aboriginal inhab i tants of Austral ia. A l though 

boomerang-like objects have been found in other 

parts of the world as well (in Egypt and I nd i a , 

for instance), these objects are not able to return, 

as far as I know. The reader may be a l i t t le 

disappointed to learn that most Austral ian 

boomerangs also do not return. Austra l ian boom-

erangs can be roughly divided into two types: 

war boomerangs and return boomerangs. Those 

of the first type are, as their name impl ies, made 

as weapons for fighting and hunt ing . A good war 

boomerang can fly much farther than an ordinary 

thrown stick, but i t does not return. Return 

boomerangs, which exist in much smaller num-

bers, are used almost exclusively for p lay. 

Actual ly things are not quite as s imple as 

this. There are many kinds of aboriginal weapons 

* An abridged version of an article that first appeared 
in the November issue of Scientific American for 1968. 
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in Austral ia , a number of which look like boomer-

angs, so that the dist inction between boomerangs 

and throwing or striking clubs is not a sharp one. 

Neither is the dist inction between war boomer-

angs and return boomerangs. The shape of boom-

erangs can differ from tribe to tribe (Fig. 26). 

Whether a given boomerang belongs to the 

return type or not cannot always be inferred 

easily from its appearance. Return boomerangs, 

however, are usually less massive and have a less 

obtuse angle between their two arms. A typical 

return boomerang may be between 25 and 75 cen-

timeters long, 3 to 5 centimeters wide and 

0.5 to 1.3 cm thick. The angle between the arms 

may vary from 80 to 140 degrees. The weight 

may be as much as 300 grams. 

The characteristic banana-like shape of most 

boomerangs has hardly anyth ing to do wi th their 

abi l i ty to return. Boomerangs shaped l ike the 

letters X, V, S, T, R, H, Y (and probably 

other letters of the alphabet) can be made to 

return quite well . The essential th ing is the cross 

section of the arms, which should be more convex 

on one side than on the other, l ike the wing 

profile of an airplane (see Fig. 27). I t is only for 

reasons of stabi l i ty that the overall shape of a 

boomerang must lie more or less i n a plane. Thus 

if you make a boomerang out of one piece of 

natural wood, a smoothly curved shape following 

the grain of the wood is perhaps the most obvious 

choice. I f you use other materials, such as 

plywood, plastics or metals, there are conside-

rably more possibilities. 

How does one throw a return boomerang? As 

a rule it is taken with the right hand by one of 
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i ts extremities and held vertical ly upward, the 

more convex, or upper, side to the left. There are 

two possibilities: either the free extremity points 

forward—as is the practice among the Austra-

l ians—or i t points backward. The choice depends 

entirely on one's personal preference. Next, the 

right arm is brought behind the shoulder and 

the boomerang is thrown forward in a horizontal 

or s l ight ly upward direction. For successful 

throwing, two things are important . First, the 

plane of the boomerang at the moment of its 

release should be nearly vertical or somewhat 

incl ined to the r ight, but certainly not horizontal. 

Second, the boomerang should be given a rapid 

rotat ion. This is accomplished by stopping the 

throwing mot ion of the r ight arm abrupt ly just 

before the release. Because of its inertia the 

boomerang w i l l rotate momentar i ly around a 

point situated in the thrower's r ight hand . Hence 

i t w i l l acquire a forward velocity and a rotation-

al velocity at the same t ime. 

A t first the boomerang just seems to fly away, 

but soon its path curves to the left and often 

upward. Then i t may describe a wide, more or 

less circular loop and come down somewhere near 

Fig. 27 
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the thrower's feet, or describe a second loop 

before dropping to the ground. Sometimes the 

second loop curves to the right, so that the path 

as a whole has the shape of a figure eight (Fig. 28). 

I t j i s a splendidf'sight if "the* boomerang,"qui te 

near again after Mescribing' a^loop, loses speed, 

Fig. 28 

hovers some 3 meters above your head for a whi le 

and then slowly descends l ike a helicopter. 

Every boomerang has its own characteristics 

wi th respect to ease of throwing, shape of path 

and hovering ab i l i ty . Moreover, one boomerang 

can often describe very different orbits depending 

on the way i t is thrown. The precision of return 

depends to a large extent on the ski l l of the 

thrower, who must take in to account such factors 

as the influence of w ind . The greatest distance 

during a flight may be 40 meters, but it can also 

be much less or perhaps twice as much; the 
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highest point can be as high as 15 meters above 

the ground or as low as 1.5 meters. I have heard 

that wi th modern boomerangs of Austral ian make 

distances of more than 100 meters can be attained, 

st i l l followed by a perfect return, but I regret 

to say that so far I have not been able to make a 

boomerang go beyond about 50 meters. 

I n the foregoing general description it was 

taci t ly assumed that the thrower was right-

handed and used a "right-handed" boomerang. 

I f one were to look at an ordinary right-handed 

boomerang from its convex side whi le it was in 

flight, its direction of rotat ion would be counter-

clockwise. Hence one can speak of the leading 

edge and the tra i l ing edge of each boomerang 

arm. Both the leading and the t ra i l ing edges of an 

aboriginal boomerang are more or less sharp. 

The leading edge of a modern boomerang arm is 

b lun t , l ike the leading edge of an airplane wing. 

Sometimes the arms have a slight twist, so that 

their leading edges are raised at the ends. 

The entire phenomenon must of course be 

explained in terms of the interaction of the 

boomerang wi th the air; in a vacuum even a boo-

merang would describe noth ing but a parabola. 

This interaction, however, is difficult to calculate 

exactly because of the complicated nature of the 

problem. Let us nonetheless look at the matter 

in a simple way. 

I f one throws a boomerang in a horizontal 

direction, with its plane of rotation vertical, 

each boomerang arm wi l l "wing" the air. Because 

of the special profile of the arms the air wi l l 

exert a force on them directed from the flatter, 

or lower, side to the more convex, or upper, side 
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(Fig. 29). This force is the same as the l i f t ing 

force exerted 011 the wings of an airplane. I n 

a right-handed throw the force wi l l be directed 

from the right to the left as viewed by the thrower. 

Lift (L) 

Ve loc i ty ( r ) 

Fig. 29 Fig. 30 

This force alone, however, is not sufficient to 

make a boomerang curve to the left. 

Following one boomerang arm dur ing its mo-

tion, one can see that its velocity wi th respect 

to the air is not constant. When the arm points 

upward, the forward velocity of the boomerang 

adds to the velocity due to the rotat ion; when it 

points downward, the two velocities are in oppo-

site directions, so that the resultant speed wi l l 

be smaller or even vanish at some points (see 

Fig. 30). Thus on the average the boomerang 

experiences not only a force from the right to the 

left but also a torque acting around a horizontal 

axis, which tends to cant the boomerang with 
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its upper part to the left. Actua l ly this turn ing 

over w i l l not be observed because the boomerang 

is spinning rapidly and hence behaves l ike a 

gyroscope. 

Now, a gyroscope (which really is nothing more 

than a rapid ly spinning flywheel) has the property 

that , when a torque is exerted on i t , it does not 

give way to that torque but changes its orienta-

tion around an axis that is perpendicular to both 

the axis of rotation and the axis of the exerted 

torque; in the case of a boomerang the orienta-

tion turns to the left. This mot ion is called 

precession. Thus the boomerang changes its 

orientation to the left, so that its plane would 

make a gradual ly increasing angle to its path 

were it not for the rapid ly increasing forces that 

try to direct the path paral lel to the boomerang 

plane again. The result is that, the path curves 

to the left, the angle between boomerang plane 

and path being kept very smal l . 

I n actual practice one often sees that , although 

the plane of the boomerang is nearly vertical at 

the start of the flight, i t is approximately hori-

zontal at the end. I n other words, the plane of the 

boomerang slowly turns over wi th its upper part 

to the r ight; the boomerang in effect "lies down". 

Let us now consider the question in more detail . 

Because much is known about the aerodynamic 

forces on airfoils (airplane wings), it is conve-

nient to regard each boomerang arm as an airfoil. 

Looking at one such wing, we see that it moves 

forward and at the same t ime rotates around 

the boomerang's center of mass. W e explicit ly 

assume that there is no motion perpendicular 

to the plane of the boomerang. W i t h a cross 
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boomerang (as] w i th the rotor of a helicopter) 

the center of mass lies at the intersection of the 

wings, but this is not the case with an ordinary 

boomerang. Here one arm precedes the center of 

mass, whereas the other arm follows i t . W e call 

both arms "eccentric", the eccentricity being the 

distance from the arm to the center of mass. 

A preceding arm has a positive eccentricity, a 

following arm a negative eccentricity. A fixed 

point of a wing feels an airstream that changes 

continuously in magni tude and direction wi th 

respect to that part of the wing. Sometimes the 

airstream may even blow against the tra i l ing 

edge of the wing profile, which can easily be 

imagined if one thinks of a slowly rotat ing 

boomerang wi th high forward velocity and looks 

at the arm po in t ing downward. W h a t are the 

forces on an airfoil moving in this special man-

ner? 

Let us first look at a simpler case: an airfoil 

moving in a straight l ine with a constant veloci-

ty v wi th respect to the air (Fig. 31). I t is cus-

tomary to resolve the aerodynamic force into two 

components: the l i ft L (perpendicular to v) and 

the drag D (opposite to v). These are both pro-

portional to v2. I f the spanwise direction of the 

wing is not perpendicular to the velocity, v has 

a component paral lel to the wing that has no 

influence; therefore we replace v by its component 

perpendicular to the wing, or the "effective 

velocity" V e f i . I n this case the forces are pro-

portional to {Veff)
2 . 

Looking at the boomerang arm again, i t is 

clear that each point 011 the arm takes part in the 

boomerang's forward velocity v. The velocity 
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with respect to the air due to the rotation, how-

ever, is different for each point . For a rotational 

velocity 10 and a point at a distance r from the 

axis of rotation (which passes through the boo-

merang's center of mass), this velocity is cor. 

For each point on the arm one can reduce the 

velocities v and cor to one resultant velocity. 

Its component perpendicular to the arm is V e f j 

(Fig. 32). Of course, the value of V e f f for a partic-

ular point on the arm wi l l change continuously 

during one period of revolut ion. One assumes 

that the contributions to the l i ft and drag of 

each part of a boomerang arm at each moment 

are again proportional to ( V e f f Y . 

Calculations were made of the fol lowing forces 

and torques, averaged over one period of revolu-

tion: the average lift force L\ the average torque 

T, with its components 71, around an axis paral-

lel to v (which makes the boomerang turn to the 

Center 
mass 

lo 

Fig. 31 Fig. 32 



The Aerodynamics of Boomerangs 47 

left) and T2 around an axis perpendicular to v 

(which makes the boomerang "l ie down") (Fig. 33); 

the average dragZ) , which slows down the forward 

velocity v, and the average drag torque T D, 

which slows down the rotat ional velocity co. 

I t turns out that none of these quant i t ies except 

T2 depends on the eccentricity for boomerang 

arms that are otherwise identical; T2 is exactly 

proportional to the eccentricity. 

The forces and torques acting on a boomerang 

as a whole are obtained by adding their values 

for each of its arms. The contributions to T2 

by arms wi th opposite eccentricity may part ly or 

completely cancel each other. 

Now we come to the important question: How 

does a boomerang move under the influence of 

these aerodynamic forces and torques (and of the 

force of gravity, of course)? As mentioned earlierv 

Fig. 33 Fig. 34 
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the average torque T causes the gyroscopic pre-

cession of a boomerang. Let us take a closer look 

at the gyroscope. I f a gyroscope spins around its 

axis w i th a rotat ional velocity co and one exerts 

a torque T on i t , acting around an axis perpendic-

ular to the spin axis, the gyroscope precesses 

around an axis perpendicular to both the spin 

axis and the torque axis (Fig. 34). The angular 

velocity of the precession is called Q. A very 

simple connection exists between Q, to, T and 

the gyroscope's moment of inertia / , namely 

Q = T i l-®. W e have seen that for a boomerang 

T is proportional to coy, so that the velocity of 

precession Q must be proportional to coiV/w, 

or vll. Hence the velocity of precession does 

not depend on co, the rotat ional velocity of the 

boomerang. 

An even more striking conclusion can be drawn. 

The velocity of precession is proportional to v / I , 

the factor of proport ional i ty depending on the 

exact shape of the boomerang. Therefore one can 

write Q = cv, wi th c a characteristic parameter 

for a certain boomerang. Now let the boomerang 

have a velocity twice as fast; it then changes the 

orientation of its plane twice as fast. That im-

plies,however, that the boomerang flies through 

the same curve! 

Thus, roughly speaking, the diameter of a 

boomerang's orbit depends neither on the rota-

t ional velocity of the boomerang nor on its 

forward velocity. This means that a boomerang 

has its path diameter more or less bui l t in . 

The dimensions of a boomerang's flight path 

are proportional to the moment of inertia of the 

boomerang, and they are smaller if the profile of 
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1.110 arms gives more l ift . Therefore if one wants 
a boomerang to describe a small orbit (for instance 
in a room), it should be made out of l ight 
material. For very large orbits a heavy boomerang 
is needed with a profile giving not much lift 
(and of course as l itt le drag as possible). 

Now one has everything needed to form the 
equations of motion for a theoretical boomerang. 
These equations can be solved numerically on a 
computer, giving velocity, orientation and posi-
tion of the boomerang at each instant. 

How do these calculated paths compare with 
real boomerang flights? For an objective compari-
son it would be necessary to record the position 
of a boomerang during its flight. This could be 
done by means of two cameras. I n order to 
control the in i t ia l conditions, a boomerang-
throwing machine would be necessary. As yet 
I have had no opportunity to do such experi-
ments, but I did manage to record one projection 
of experimental boomerang paths with a single 
camera. In the wing t ip of a boomerang a t iny 
electric lamp was mounted, fed by two small 
1.5-volt cells connected in series, placed in 
a hollow in the central part of the boomerang 
(see Fig. 35). I n this way the boomerang was 
made to carry during its flight a light source 
strong enough to be photographed at night. 
Some of the paths recorded in this manner are 
shown in Fig. 36; calculated orbits are added for 
comparison in Fig. 37. 

Because the camera was not very far from the 
thrower, those parts of the trajectories where the 
boomerang was close to the camera appear exag-
gerated in the photographs. This effect of perspec-

4 - 0 1 5 4 4 
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l ive was taken into account in the accompanying 

calculated paths. The reader may decide for 

himself whether or not he finds the agreement 

between theory and experiment satisfactory. At 

any rate, the general appearance and peculiari-

ties of real boomerang paths are reproduced 

reasonably well by this theory. 

A Hydrodynamic Median ism 
in a Falling Test Tube 

by G. I. Pokrovsky 

Fill a standard test, tube with water, and , 

holding it a few centimeters above the table top, 

let it drop vertical ly (see Fig. 38). The surface 

of the table should be sufficiently hard to produce 

4* 
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an elastic impact . Dur ing impact , the meniscus 

of the water in the test tube, which is normal ly 

concave because of capi l lary force, w i l l rapid ly 

level out , and a th in stream of water wi l l sud-

denly burst upward from the centre. Figure 38 

si lows the water surface before impact (broken 

line) and after impact (solid line). The stream 

upward separates into drops, and the uppermost 

drop reaches a height substant ia l ly higher than 

that from which the tube is dropped. This indi-

cates that the energy in the water is redistributed 

during impact so that a smal l fraction of water 

close to the centre of the meniscus shoots out of 

the tube at high velocity. 

A device that redistributes energy is called 

a mechanism. Usually, this word is applied to 

solid parts (levers, toothed wheels, etc.), al-

though there are l iqu id and even gaseous mech-

anisms. The water in the tube is just one example 

of such a mechanism. 

Hydrodynamic mechanisms are especially im-

portant when very great forces that cannot be 

withstood by conventional solid parts are in-

volved. The force of explosive material in a 

cartridge, for example, can be part ia l ly concen-

trated by mak ing a concave cavity in the cart-

ridge, which is lined wi th a metal sheet. The force 

of the explosion compresses the metal and pro-

duces a th in metal l ic jet whose velocity (if the 

shape of the l in ing is correct) may reach the 

escape velocity of a rocket. 

Thus, this modest experiment on a very simple 

phenomenon in a test tube relates to one of the 

most interesting problems of the hydrodynamics 

of ultra high speeds. 
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An Instructive Experiment 
with a Cumulative Jet 

by V. Mayer 

I n Professor G . I . Pokrovsky's s imple and 

elegant experiment on the hydrodynamics in a 

test tube, a tube part ia l ly filled wi th water is 

dropped from a few centimetres above a hard 

surface, thus producing a jet of water from the 

tube upon impact . Since the water at the edges 

clings sl ight ly to the glass of the tube, the me-

niscus is concave. Upon impact the tube and 

the water in it stop sharply, which causes the 

water to accelerate rapidly. The water behaves 

as if it were very heavy and its surface levels 

out. The water around the edges resides, and 

a thin jet of water gushes out from the center of 

the tube for a short t ime. 

You can set up a s imi lar , perhaps even more 

striking experiment. Carefully cut off the bottom 

of a test tube to make a glass pipe 15 m m in 

diameter and about 100 mm long. Seal the fluted 

end of the pipe wi th a piece of rubber cut from 

a toy bal loon. F i l l the pipe wi th water and, 

covering the open end with your finger, lower 

that end into a glass of water. Remove your finger 

and adjust the pipe so that about a centimetre of 

water is left inside the pipe. The water inside 

the pipe should be level with the water surface 

in the glass. Fix the pipe vertically to a support. 

Now slightly tap the piece of rubber stretched 

over the pipe. A cumulat ive jet of water wi l l 

immediately rise inside the pipe and reach the 

piece of rubber itself. 
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Figures .'!!) arid 40 show drawings of photo-
graphs taken at different moments during this 
experiment. They depict different stages of the 
formation and disintegration of various cumula-
tive jets. The top two pictures show the jet 
proper; the bottom two depict the break-up of 
the jet into individual drops. 

Try to explain the results of this experiment 
by comparing it with the one described by 
Pokrovsky. This setup is especially interesting 
because it allows us to observe the actual forma-
tion of a cumulative jet, which is more difficult 
in the experiment with a fal l ing test tube be-
cause the human eye is not fast enough to register 
the phenomena that take place during impact. 
Nevertheless, we advise you to return to the 
experiment, with the fal l ing tube once more 
to examine the details of the formation of the 
jet. W i t h this in mind we suggest you solve the 
following problems. 

EXERCISES 

1. Determine whether the shape of the test tube bot-
tom affects stream formation. Does the stream develop 
because the bottom directs the shock wave in the water? 
To answer this question, solder t in bottom of any 
shape (plane or concave, for example) to a thin-wall 
copper pipe. Use these modified test tubes in the exper-
iments described above to prove that the shape of the 
bottom does not influence the formation of the stream. 
Thus, the results of this experiment cannot be explained 
as the direction of the wave by the bottom. 

2. Determine whether it is necessary for the l iquid 
to wet the walls of the test tube. Place a small piece of 
paraffin inside a glass test tubp, and melt the paraffin 
over the flame of a dry fuel. Rotate the tuhe over the 
flame to coat the inside with a thin paraffin film. Now, 



(a) 

Fig. 39 

(A) 

Fig. 40 
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repeat the Pokrovsky experiment with this coated test 
tube. The cumulative jet should not form, which means 
that the walls of the tube must be wet for the experiment 
to work properly. 

3. What other experiments can be set up to obtain 
a cumulative jet in a tube that is stationary relative 
to the observer? 

Magic with Physics 

by V. Mayer and E. Mamaeva 

Take a glass pipe, one end of which is tapered 

l ike that of a pipette, and show the pipe to your 

audience. Ho ld a glass of water (heated to 80-

90 °C) by its r im in your other hand, and show 

it to your audience, too. Now, lower the tapered 

end of the pipe into the glass, and let the pipe 

fill w i th water. Close the upper end of the pipe 

with your finger and remove the pipe from the 

glass (Fig. 41). 

Your audience wi l l be able to see air bubbles 

appear at the lower end of the pipe. They grow, 

leave the walls of the pipe, and rise to the top 

of the pipe. But the water stays in the pipe! 

Now, empty the pipe back into the glass by 

removing your finger from the upper end, and 

wave the pipe in the air several times before 

tak ing some more water. Close the upper end 

with your finger again, and quickly pul l the pipe 

out of the glass and turn it upside down (Fig. 42). 

A strong stream of water over a metre high will 

burst out of the pipe. 

Although the secret of this trick is very simple 

indeed, your audience is unl ikely to guess it , 
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The glass contains water heated to 80-01) °C 
whereas the pipe is room temperature (about 
20 °C). You should be able to explain why no 
water leaves the pipe at first without any hints. 
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The explanation for the powerful stream of 

water is more complicated. When hot wafer 

enters the pipe from the glass, the air in the upper 

part of the pipe remains at room temperature 

because the pipe conducts heat poorly. After you 

have closed the upper opening and turned the 

pipe upside down, the hot water streams down-

ward, heating the air qu ickly . The pressure rises, 

and the expanding air shoots the remaining water 

out through the tapered end of the pipe. 

Use a glass pipe 8-12 m m in diameter and 

30-40 cm long for this experiment. The smaller 

opening should be about 1 m m in diameter. 

Between tricks the pipe should be well cooled 

(you can even blow through it) because the height 

of the founta in wi l l depend on the temperature 

difference between the air and the water in the 

pipe. The opt imal amount of wafer in the pipe 

fluctuates from 1/4 to 1/3 of its volume and can 

easily be determined empirical ly. 

A Drop on a Hot Surface 

by M. Golubev and A. Kagalenko 

Turning an iron upside down and levelling it 

horizontal ly, let a l i t t le water drop on its hot 

surface. I f the temperature of the iron is sl ightly 

over 100 °C, the drop wil l diffuse as expected and 

evaporate within a few seconds. I f , however, 

(lie iron is much hot lei' (300-350 °C,). something 

unusual wil l happen: the drop wil l bounce be-

tween ] and 5 mil l imetres off the icon (as a ball 

bounces off the floor) and wi l l then move over 
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the hot surface without touching it . The stabil ity 
of such a state depends, first of all , on the tem-
perature of the surface: the hotter the iron, the 
calmer the drop. Moreover, the "longevity" of 
the drop, the t ime before it evaporates complete-
ly, increases many times over. The rate of 
evaporation depends on the size of the drop. 
Larger drops shrink quickly to 3-5 mm , whereas 
smaller drops last longer, without noticeable 
changes. In one of our experiments a drop 3 mm 
in diameter remained for about 5 minutes (300 
seconds) before evaporating completely. 

What is the explanation for this strange phenom-
enon? When the drop first touches the heated 
surface, its temperature is about 20 °C. W i t h i n 
fractions of a second, its lower layer are heated 
to 100 °C, and their evaporation begins at so fast 
a rate that the pressure of the vapour becomes 
greater than the weight of the drop. The drop 
recoils and drops to the surface again. A few 
bounces are enough to heat the drop through 
to boiling temperature. I f the iron is well heated, 
the drop calms down and moves over the iron at 
a distance slightly above the iron. Obviously, 
the vapour pressure balances the weight of the 
drop in this condition. Once such a steady state 
is reached, the drop is fairly stable and can 
"live" a long time. 

When the drop is small, its shape is roughly 
that of a sphere. Larger drops are vertically 
compressed. On a hot surface the drop seems to 
be supported by a vapour cushion. The reaction 
force that develops as a result causes the deforma-
tion of the drop. The larger the drop, the more 
noticeable the deformation. 
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Oscillations, for example, compression, ten-

sion, or even more complex oscil lation, may 

develop, especially in large drops (Figs. 43 and 

P ig . 43 

Fig. 44 

44). The photograph in Fig. 43 shows a dark 

spot in the centre of the drop. This is vapour 

bubble. In large drops several such bubbles may 
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appear. Occasionally, a drop assumes 1 lie shape 

of a ring wi th a single, hig vapour buhhle in the 

middle . W h e n this occurs the evaporation pro-

ceeds so intensively that the drop shrinks v is ib ly . 

Figure 44 shows one of the most interesting kinds 

of oscillations: a "tr igonal" drop. 

Keep the fol lowing advice in mind when con-

ducting experiments like those described above. 

1. The iron should be as smooth as possible, 

without scratches or irregularities. When a drop 

runs into such an irregularity, its life is consider-

ably reduced. W h y ? 

2. The iron should be fastened to a support 

horizontal ly. I n our experiments we used a tr ipod 

for geodetical instruments. 

3. Safety precautions should not be neglected. 

The conductors of the iron should be rel iably 

insulated, take care not to scald your hands with 

boil ing water. 

Surface Tension Draws a Hyperbola 

by I. Vorobiev 

The coefficient of the surface tension of a l i qu id 

can be determined by measuring the rise of wet-

ting l iquid in a capi l lary tube. Capi l lary tubes 

and a microscope for measuring their inner 

diameters are not always readily avai lable, how-

ever. Fortunately, the tubes can be easily re-

placed wi th two glass plates. Lower the plates into 

a glass of water, and draw them together gradual-

ly. The water between them wi l l rise: it is sucked 

in by the force of surface tension (Fig. 45). 



1. Vorolnov 

TJio coefficient of surface tension o can easily 

be calculated from the rise of the water y and 

the clearance between the plates d. The force 

of the surface tension is F = 2oL , where L is 

the length of the plate (mult ip l ied by 2 because 

the water contacts both plates). This force re-

where p is the water density. Consequently, 

2 oL = p Ldyg 

flence, the coefficient of the surface tension is 

o = l /2p gdy (1) 

A more interesting effect can be obtained by 

pressing the plates together on one side and leav-

ing a smal l clearance on the other (Fig. 46). 

I n this case the water w i l l rise, and the surface 

between the plates wi l l be very regular and 

smooth (provided the glass is clean and dry). 

I t is easy to infer that the vertical cross section 

of the surface is a hyperbola. And we can prove 

this by replacing d wi th a new expression for the 

clearance in formula (1). Then d -- D j- follows 

from the s imi lar i ty of the triangles (see Fig. 46). 
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Here D is the clearance al the edge of the plates; 

L is the length of the plate, and x is the distance 

from the line of contact to the point where the 

clearance and the rise of the water are measured. 

Tims, 

o --= l/2pgyD , 

or 

2 aL 1 ,9*. 

Equation (2) is really the equation of the hyper-

bola. 

The plates for this experiment should be about 

10 cm by 20 cm size. The clearance on the open 

side should be roughly the thickness of a match 

Fig. 47 Fig. 48 

stick. Use a deep tub like those photographers use 

in developing pictures to hold the water. For 

ease in reading the results, attach a piece of 

graph paper to one of the plates. Once we have 

a graph drawn by the water, we can check whether 

the curve is actually a hyperbola. A l l the rectan-

gulars under the curve should have the same 

area (Fig. 47). 
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I f you have a thermometer, you can study the 

dependence of surface tension of water tempera-

ture. You can also study the influence of additives 

on water tension. 

The force of surface tension F is directed at 

right angles to the line of contact between the 

water and the glass (Fig. 48). The vertical com-

ponent of the force is balanced by the weight 

of the water column. Try to explain what ba-

lances its horizontal component. 

Experiments with a Spoonful of Broth 

by V. Mayer 

The next time you are served boui l lon for din-

ner, scoop up a big spoonful, don' t swallow it im-

mediately. Look carefully at the broth instead: 

you wi l l see large drops of fat in i t . Note the size 

of these droplets. Now pour some of the broth 

back into your soup bowl, and look again at the 

broth in the spoon. The drop of fat should have 

diffused and gotten thinner but bigger in diame-

ter. W h a t is the reason behind this phenomenon? 

First let us see under what conditions a drop 

of fat can lie on the surface of the broth without 

diffusing. Look at Fig. 49. A drop of l iqu id 2 

1' 

Fig. 49 
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(the fat) lies on the surface of l iqu id 1 (the broth). 

The drop is shaped roughly like a lens. The en-

vironment 3 above the bowl is a mixture of the 

vapours of l iqu ids 1 and 2. Media 1, 2, and 3 
meet at the circumference of the drop. Isolate 

an increment of this circumference (close to 

point 0 in Fig . 49) of A i length. Three forces of 

surface tension act upon this increment. A t the 

interface of l iqu ids 1 and 2, force F12 acts, tan-

gential to the interface and equal in module to 

I F 1 2 | = O 1 2 A Z , 

where o12 is the surface tension at the interface of 

media 1 and 2. S imi lar forces F13 and F 2 3 act 

at the interfaces of 1 and 3: 

I Fi3 I =°-13AZ 

and 2 and 3: 

I F23\=g23M. 

Here o1 3 and a 2 3 are the appropriate surface 

tensions. 

Obviously, the drop reaches equi l ibr ium if the 

total of all these forces equals zero 

F12 + Fl3 + F23 = 0 

or their projections on coordinates X and Y 
(after the subst i tut ion of appropriate absolute 

values and the cancellation of A I) are 

a13 = C 0 S + 023 c o s (1) 

o l 2 sin 0J = o 2 3 sin 02 

Here, 6X and 82 are the angles between the tan-

gents to the surface of medium 2 and the surface 

5-01544 
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of med ium 1. These angles are called angles of 

contact. 

I t follows from Eq . (1) that equi l ibr ium of the 

drop is possible if the surface tensions are relat-

ed as 

^13 < cri2 + o2 3 . 

Since surface phenomena in a l iqu id are practi-

cally independent of the gaseous environment 

over i t , we assume that 

= Oi and a 2 3 = cr2. 

W e call (i1 and cr2 surface tensions of l iquids 1 

and 2, respectively. I n this case these values re-

fer to the surface tensions of both the broth and 

the fat . 

So, a drop of fat w i l l float on the surface of 

the broth without diffusing if the surface ten-

sion of the broth is less than the total of the sur-

face tensions of the fat and the interface between 

the broth and the fat: 

<7l < <*2 + °12 ( 2 ) 

I f the drop is very th in (almost flat), 0X and 02 

wi l l be smal l (0i = 02 = O) and the equ i l i b r i um 

condit ion for the drop w i l l be 

Ol = CT2 + °12 

W h e n Ox > o 2 + a 1 2 there are no angles 0 j 

and 02 for which Eq . (1) would hold true. There-

fore, l iqu id 2 does not make a drop on the sur-

face of l iqu id 1 in this case, but diffuses on its sur-

face in a th in layer. 

Now let us try to explain the results of our ex-

periment wi th a spoonful of broth. Drops of fat 
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float on the broth, which means that Eq . (2) 

holds. W h y do they diffuse on the surface of the 

broth if the amount of broth is reduced? Wha t 

has changed? Since the surface tensions of the 

fat o 2
 a n d t h e broth-fat interface a1 2 remain 

unchanged, we have to assume that by pouring 

out some of the broth, we change the surface ten-

sion of the broth o, . Hut the broth is water (to a 

first approximat ion) . Can the surface tension of 

water be changed by simply decreasing the 

amount? Obviously not. The broth, however, is not 

pla in water but rather water covered wi th a th in 

layer of fat . B y pouring out some of the broth, 

we reduce the amount of fat, and its layer on the 

broth surface becomes thinner. This apparently 

reduces the surface tension of the broth and as a 

result, the fat drops diffuse. 

To test this hypothesis, try the fol lowing ex-

periment. Pour some tap water into a clean sau-

cer which has no traces of fat. Pu t a t i ny drop of 

sunflower oi l on its surface (a pipette or a clean 

refill from a ball-point pen can be used for the 

purpose). The first drop should diffuse completely 

over the surface, whi le the next drops do not dif-

fuse but form a lens. Carefully pour out some of 

the water, and the drops w i l l diffuse again. 

Now return to the experiment w i th the spoon-

ful of broth. I f you watch the behaviour of the 

fat closely, you w i l l notice that the drops rupture 

and reunite. Figures 50-55 show photograph of 

one such experiment. W e filled a clean glass dish 

wi th tap water coloured with I nd i an ink that 

contains no alcohol. W e placed eight very smal l 

drops of sunflower oil on the surface w i th a th in 

glass tube (see Fig. 50). When we sucked a small 

5 * 
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Fig. 50 

amount of water out wi th a rubber bu lb , the 

drops enlarged. When more water was removed, 

the drops became even larger and changed shape 

(because of the water currents). The beginnings 
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Fig. 52 

Fig. 53 

of future ruptures also appeared (see Fig. 51). 

Further modifications occued rrspontaneously. 

The ruptures grew and united into a single* large 

rupture. The drop became a~ring, which finally 
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1 
Fig. 54 

broke and rearranged into a new drop (Figs. 

52-55). 

* Perhaps now you wi l l agree that it is worth-

whi le watching your soup before putt ing it into 

your mouth! 



How to Grow a Crystal 71 

How to Grow a Crystal 

by M. Kliya 

Modern industry cannot do wi thout a wide va-

riety of crystals. Crystals are used in watches, 

transistorized radioes, computors, lasers, and 

many other machines. Even nature's enormous 

laboratory is no longer able to meet the demands 

of developing technology, and special factories 

have appeared where various crystals, ranging in 

size from very smal l crystals to large crystals 

weighing several ki los, are grown. 

The methods for growing crystals vary and 

often require high temperatures and tremendous 

pressure (for example, when growing artificial 

diamonds). B u t some crystals can be grown even 

in your home laboratory. The simplest crystals 

to grow at home are potash a lum crystals, 

KA1(S04 )2-12H20. This absolutely harmless 

substance is widely available (alums are occa-

sionally used to purify tap water). Before growing 

our own crystals, however, let us take a closer 

look at the process itself. 

When a substance is dissolved in water at a 

constant temperature, dissolution stops after a 

certain t ime, and such a solution is said to be 

saturated. So lub i l i ty refers to the max ima l quan-

t i ty of the substance that dissolves at a given 

temperature in 100 grams of water. Normal ly , 

solubi l i ty rises wi th a rise in temperature. A so-

lution that is]j saturated at one temperature be-

comes unsaturated at a higher temperature. 
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I f a saturated solut ion is cooled, the excess of 

the substance wi l l precipitate. Figure 56 shows 

the dependence of potash a lum solubi l i ty on tem-

perature. According to the graph, if 100 grams of 

a solut ion saturated at 30 °C are cooled to 10 °C, 

over 10 grams of the substance should precipi-

tate. Consequently, crystals can be grown by 

cooling a saturated solut ion. 

Crystals can also be grown by evaporation. 

W h e n a saturated solut ion evaporates, its vol-

ume decreases, whi le the amount of dissolved sub-

stance remains unchanged. The excess of sub-

stance thus produced falls as a precipitate. To see 

how this occurs, heat a saturated solution, and 

then cover the jar conta in ing the unsaturated so-

lut ion wi th a glass plate and al low it to cool to 

a temperature below the saturat ion temperature. 

The substance may not precipitate wi th this meth-

od, in which case we w i l l be left wi th a supersat-

urated solution. This is because we need a seed, 

a t i ny crystal or even a speck of the same sub-

10° 20° 30° 
Solution temperature pig. 56 
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stance, to form a crystal. Usual ly, mu l t ip le smal l 

crystals can be generated s imply by shaking the 

jar or removing the cover. To grow large crystals, 

the number of seed crystals should be l imi ted . 

As an artificial seed, a crystal grown earlier works 

best of a l l . 

The seed crystal can be grown as follows. 

Take two clean glass jars. Pour warm water into 

one of them, and then add a lum. St ir the mix-

ture, and watch the dissolution process closely. 

When dissolution stops, carefully drain the so-

lut ion into another jar, taking care not to pour 

any of the undissolved substance into the second 

jar. Cover the jar wi th a glass plate. W h e n the 

solution has become cool, remove the plate. Af-

ter a short t ime, you should see many crystals 

in the jar. Let them take their t ime to grow, be-

fore selecting the ^largest as a seed crystal. 

Now we are ready to grow our own crystal. 

First of a l l , we need proper glassware. To remove 

undesirable nuclei from the wal ls of the ves-

sels, sterilize them over the spout of a boi l ing 

teapot. Then make another warm saturated so-

lut ion in one jar, and drain it in to another. Heat 

this warm saturated solution of a lum a l i t t le 

more. Then cover the jar wi th a plate, and set 

it aside to cool. As the temperature of the solu-

tion approaches the saturation temperature, 

lower the seed crystal you made earlier in to the 

jar. Since the solution is sti l l unsaturated, the 

seed crystal w i l l begin to dissolve. Bu t as soon 

as the temperature drops to the saturat ion point , 

the seed crystal stops dissolving and starts grow-

ing. (If your seed crystal dissolves complete-

ly, introduce another crystal.) The crystal w i l l 
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continue to grow once the solution has cooled, if 

you l ift the cover and let the water evaporate. 

Do not let dust enter the jar. Growth w i l l con-

t inue for two or three days. 

W h e n growing crystals try not to move or 

touch the jar. After a crystal has developed, re-

move it from the solut ion, and dry i t carefully 

w i th a paper napkin so i t w i l l retain its shine. 

The crystals develop differently, depending on 

whether the seed crystal is placed on the bot tom 

of the jar or suspended from a thread (Fig. 57). 

Y o u can even grow 'a necklace' by running a 

thread several times over the seed crystal before 

suspending i t in the solution. 

Growing crystals is an art, and you may not 

be completely successful r ight away. Do not get 

disappointed. W i t h a l i t t le persistence and care, 

you can produce beaut i fu l ' crystals. 

Crystals Made of Spheres 

by G. Kosourov 

Before we can predict, explain, or understand 

the properties of a crystal, we must determine its 

Fig. 57 
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structure. I f we know the arrangement and the 

symmetry of atoms in the crystal latt ice, we 

can tell whether the crystal is piezoelectric, i .e., 

whether a certain voltage is generated at its 

edges under mechanical compression, whether the 

crystal is capable of ferroelectric transit ion, which 

develops at a specific temperature and is charac-

terized by the formation of an intrinsic electric 

field, whether the crystal generates a l ight wave 

of double frequency when transmit t ing a laser 

beam, and so on. The structure of the crystal car-

ries abundant information about the crystal it-

self. 

Different atomic arrangements in crystals can 

be studied wi th a few simple props. W e can bu i ld 

models of crystals, fol lowing the principles used 

in nature w i th ordinary bal l bearings. Even crys-

tallographers use these three-dimensional mod-

els, which clearly show the specifics of atomic 

arrangements in complex structures. Before start-

ing our experiments, we should make a few the-

oretical observations. 

Crystal lattices result from the interaction of 

atomic forces. W h e n the atoms are close together, 

repulsive forces prevail and increase sharply wi th 

attempts to br ing the atoms together. Attract ive 

forces prevail at greater distances and decrease 

rather gradual ly with distance. W h e n atoms are 

drawn together by attractive force, the potential 

energy of their interaction decreases, just as the 

potential energy of a fa l l ing stone decreases. This 

potential energy is m in ima l at the point at which 

attractive and repulsive forces are equal , and 

it increases sharply as the atoms draw closer. 

The dependence of potential energy on distance 
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is shown in Fig. 58. I n equ i l ibr ium, atoms as-

sume places of m i n ima l potent ia l energy. I f there 

are many atoms, this tendency leads to the repeat-

ed formation of the most energy-efficient con-

figuration of a smal l group of atoms. This con-

figuration is called the un i t cell. 

Some substances have very complex structures. 

The un i t cell of some silicates, for example, 

Fig. 58 Fig. 59 

contains over 200 atoms. Other substances, many 

metals, for example, form their crystal latt ice 

by a very simple a lgor i thm. Natura l ly , we 

shall start from the simplest coordinations. I n 

our experiments atoms are represented by meta l 

spheres. Elastic forces, developing as a result of 

the conjugation of the spheres, serve as the repul-

sive force, and the attractive force is provided by 

gravity. 

Stretch a th in piece of rubber (this may be a 

piece of a surgical glove) over the opening of a 

jar, box, or section of pipe, and fasten it w i th a 

rubber band. Place two spheres on the piece of 
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rubber. The rubber wi l l sag s l ight ly , and the 

spheres w i l l be attracted to one another. Their po-

tent ia l energy, which depends on distance, is shown 

approximately in Fig. 59 and is very s imi lar to 

the dependence in Fig. 58. I f we put about 30 

spheres on the piece of rubber and shake them 

sl ightly, they w i l l arrange themselves in regular 

rows (Fig. 60). The centres of the spheres wi l l l ie 

Fig. 60 

at the apexes of equilateral triangles, every side 

of which equals the diameter of the sphere. The 

spheres w i l l fill the whole plane forming a lat-

tice called a hexagonal (Gr. hex six and gonia 

a corner, angle). Each sphere is surrounded 

by six spheres touching each other. Their centres 

form regular hexagons. 

I f you turn the latt ice one-sixth of a revolut ion 

around an axis through the centre of any one of 

the spheres, some of the spheres wi l l change places, 

but the overal arrangement of the system in 

space w i l l remain the same. The latt ice of spheres 
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wi l l translate itself in to the original posit ion. 

After six such rotations each sphere resumes its 

original posit ion. I n such cases crystallographers 

say that the axis of symmetry of the sixth order, 

which is oriented perpendicular to the plane of the 

latt ice, passes through the centre of each sphere. 

This axis makes the lattice "hexagonal". I n addi-

t ion to the symmetry axes of the sixth order, 

third-order symmetry axes pass through the cent-

res of the holes formed by neighbouring spheres. 

(The third-order symmetry axis is a straight 

l ine; each t ime the latt ice is rotated 120 degrees 

around this axis, the original configuration re-

peats. Irregularly shaped bodies have first-order 

symmetry axes since they return to the original 

posit ion after a single complete revolution. Con-

versely, the symmetry axis of infinite order passes 

through the plane of a circle at r ight angles 

since the circle translates itself into the original 

position at an infinitely smal l angle of ro-

tat ion.) 

The fol lowing discussions w i l l be clear only 

if you have spheres for bu i ld ing models of differ-

ent crystals. Consider the holes on either side 

of a row of spheres (Fig. 61). Since the number of 

holes in either row equals the number of spheres 

in a row, an infinite latt ice of spheres has twice 

as many holes as spheres. The holes form two 

hexagonal lattices, s imi lar to those formed by the 

centres of the spheres. These three lattices are 

shifted relative to one another in such a way that 

the sixth-order symmetry axes of each latt ice 

coincide wi th the third-order symmetry axes of 

the other two lattices. 

The second layer of spheres fills one of the lat-
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tices of holes to form a hexagonal latt ice of con-

tiguous spheres, s imi lar to the first such latt ice. 

The elasticity of the piece of rubber, however, 

may not provide enough attractive force to hold 

the spheres of the second and th ird layers. There-

fore, since we know how the spheres in the bot-

tom layer l ie, let us make an equilateral tr iangle 

from plywood (Fig. 62), the sides of which equal 

an integer number of spheres (seven i n our model) , 

and fill i t w i th spheres of the bot tom layer. 

Fig. 61 Fig. 62 

The second layer of spheres can fill any latt ice 

of holes, but when we reach the th i rd layer, we 

find the holes are not equivalent . The centres of one 

of the lattices are arranged over the centres of the 

spheres in the bottom layer, whereas the second 

lattice lies over the vacant holes of the bottom 

layer. W e shal l begin by pu t t ing spheres into 

the holes above the spheres of the bottom layer. 

I n this case the th ird layer w i l l be an exact 

replica of the bottom arrangement of spheres; 

the fourth layer w i l l repeat the second layer, and 

so on. Each layer w i l l repeat itself every second 
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layer. Our pyramid w i l l be rather fragile (Fig. 

63) because the "attract ive" force in our model 

acts downwards only, and the spheres in the 

holes along the edges are easily pressed out by 

the spheres of the layers above. 

This k ind of packing, called hexagonal closest 

packing, is typical of beryl l ium, magnesium, cad-

m ium , and hel ium crystals at low temperatures 

and pressures over twenty five atmospheres. This 

packing has only one system of closely packed, 

parallel layers. The third-order symmetry axis, 

which passes through the centre of each sphere, is 

perpendicular to this system of layers. The sym-

metry order is thus reduced: when the axis passes 

through centres of the even-layered spheres, 

the latt ice has the sixth-order symmetry; the 

same axis passes through the centres of the holes 

in the odd layers, and the symmetry of the odd 

layers, relative to this axis, is, therefore, only 

of the third order. Nevertheless, this packing is 

called hexagonal, because i t can be viewed as two 

hexagonal lattices of even and odd layers. Note 

also that the empty holes in al l layers are arranged 

one over the other and channels pass through the 

whole hexagonal structure, in to which rods, 

whose diameter is 0.155 that of the diameter of 

the sphere can be inserted. The centre lines of 

these channels are the third-order symmetry 

axes. Figure 63 shows the model of a hexagonal 

structure wi th rods placed in the channels. 

Now let us put the spheres from the third layer 

into the holes above the vacant holes of the bot-

tom layer. W e can construct two different pyra-

mids (Figs. 64 and 65), depending on the system 
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of holes we select for the second layer of spheres. 

The faces of the first pyramid are equilateral 

triangles with hexagonal packing, which do not 

differ from the packing of the bottom layer of 

the pyramid. I n other words, our pyramid is a 

tetrahedron, one of the five possible regular poly-

hedrons. This packing has four families of close-

ly packed layers, whose normals coincide wi th 

the third-order symmetry axes of the tetrahedron 

which pass through its apexes. I n such a packing 

the layers repeat every third layer. The lateral 

faces of the second pyramid are isosceles triangles, 

and the pyramid itself is part of a cube, intercept-

ed by the plane formed by the diagonals of the 

faces wi th a common apex (Fig. 66). The packing 

in the lateral faces of such a pyramid forms a 

square lattice w i th its rows parallel to the diag-

onals of the cube face. 

Obviously , we have only one type of packing 

wi th two different orientations. I f we remove the 

spheres from the edges of the tetrahedron, the 

faces of the cube w i l l emerge. Conversely, by re-

mov ing the spheres that make up the edges of 

the cube, we turn the cube into a tetrahedron. 

This packing, called cubic closest packing, is 

characteristic of neon, argon, copper, gold, pla-

t i num and lead crystals. Cubic closest packing 

possesses a l l the elements of cubic symmetry. 

I n part icular, the third-order symmetry axes of 

the tetrahedron coincide wi th the space cube di-

agonals, which are also third-order symmetry 

axes for the cube. This packing is based on a cube 

of fourteen spheres. E ight of the spheres form 

the cube, and six form the centres of its faces. 

I f you look closely at the second pyramid 
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(Fig. 66), you w i l l find" this elementary cube at 

the apex. Cubic closest packing can be viewed as 

a combinat ion of four simple cubic lattices. 

The equal i ty of al l the spheres of the packing is 

especially noticeable from this angle. Since the 

hexagonal and cubic closest packings can be pro-

duced by superimposing hexagonal layers onto 

one another, the two obviously have the same 

density, or space factor, despite the difference 

in symmetry. 

If we bu i ld a square form and place spheres in 

a square lattice, we shall get another close pack-

ing. A l though the spheres in each layer are 

not packed in the closest possible way, the holes 

between them are deeper, and, therefore, the lay-

ers lie closer than in a hexagonal structure. I f 

we complete the packing, we w i l l get a tetra-

hedral pyramid (Fig. 67) whose side faces are equi-

lateral triangles in which the spheres are packed 

hexagonally. I f we add another such pyramid 

with its apex downward, we shall get a th ird po-

lyhedron (after the tetrahedron and the cube): 

an octahedron wi th eight faces. Obvious ly , this 

6« 

Fig. 66 Fig. 67 
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is also the cubic closest packing with the faces 

of the cube parallel to the plane of the base. Re-

move the spheres forming the edges, and you w i l l 

find five spheres in the upper intercept plane) 

which form the face of an elementary cube. 

These models can be used in a number of physi-

cal experiments. By shaking the piece of rubber, 

Fig. 68 Fig. 69 

for example, you can s imulate the heat-induced 

mot ion of atoms. (You wi l l see how 'a rise in 

temperature' destroys the packing of the spheres.) 

Since eac' hexagonal layer occupies relatively 

shallow holes of the next layer, the layers are 

loosely bound, and slippage develops easily. I f 

you slide one hexagonal layer against another, 

you wi l l see that easy slippage, in which the lay-

ers move as a whole, occurs in three directions. 

A simi lar si tuat ion can be observed in real crys-

tals, which explains the specifics of plastic de-

formation in crystals. 

Models can be bu i l t from any k ind of sphere. 

I f you do not have bal l bearings, use large 

necklace beads or even smal l apples. Figures 68 

and 69 show unit cells of cubic and hexagonal 
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packings made of ping-pong bal ls glued together. 

Ping-pong balls, which are readily avai lable and 

make workable models, are h igh ly recommended, 

especially for junior-high and high-school 

physics classes. 

Various packings of contiguous bal ls are impor-

tant i n crystallography, and we shal l discuss 

them again. Meanwhile, get some balls and bu i ld 

models! 

A Bubble Model of Crystal 

by Ya, Geguzin 

On S imula t ion 

f I n the difficult process of interpreting experi-

menta l facts or theoretical propositions, almost 

everyone needs an image, a visible presentation, 

a simplified model of the subject. Perhaps one 

of the most important skills a scholar or teacher 

needs is the ab i l i ty to construct images, analo-

gies, and models, which can i l lustrate certain 

physical phenomenon and, thus, enlarge our 

understanding of them. W h a t should such a 

model be? W h a t must it be able to show? W h a t 

can one expect from the model and what are 

its constraints? First, we expect our model to 

be a learning aid. I t must contain no false data 

but must inc lude at least a fraction of the 

truth pertinent to the subject. I n everyday life, 

of course, we scorn hal f truth. Bu t 'ha l f t ruth ' 

is a term of h igh approbation in relation to 

models. F ina l ly , the model should be clear and 

easily comprehensible without du l l commentary. 
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The very best model needs no explanation at 
all since its clarity gives it the force of a proof. 

There are many convincing and elegant models 
in physics, particularly in solid state physics. 
I n this article we shall discuss a 'live' model, 
which illustrates and reflects the structure flaws, 
and complicated interactions of real crystal very 
well. This is not a new model. I t was conceived 
by the outstanding British physicist L. Bragg 
in the early 1940s and realized by Bragg and his 
colleagues V. Lomer and D. Naem. Therefore, 
we shall call it the BLN model after Bragg, Lo-
mer, and Naem. 

What Do We Want to Simulate? 

The answer is clear: real crystal. Real crystal 
is a vast set of identical atoms or molecules ar-
ranged in strict order to form a crystal lattice. 
Occasionally, this order is disturbed, signifying 
the presence of defects in the crystal. Another 
very important characteristic of crystals is the 
interaction of the atoms forming the crystal. 
We wil l discuss this interaction a bit later. Now 
we wil l simply state that they do interact! 
Wi thout interaction, the atoms would form a 
heap of disorderly arranged atoms rather than a 
crystal. The maintenance of order in crystals 
is a direct consequence of this interaction. 

Another widely used model is the so-called dead 
model of crystal, in which wooden or clay balls 
are bound by straight wires. The balls represent 
atoms, and the wires are the symbols of their 
bonds in 'frozen' state. The model is 'dead' 
since it 'freezes' the interaction of the atoms. In 
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this reasonable and very useful model , different 

kinds of atoms are represented by bal ls of differ-

ent colour and size, and wires of different length 

represent the distance between the atoms. Al-

though the model does not reflect a l l the t ru th 

about the crystal, it' does convey the t ruth with-

out false assertions. The model, of course, can-

not depict the mot ion of the atoms, but i t reflects 

the order of their posit ion very clearly. The dead 

model is an outstanding aid i n depict ing the 

space arrangement of atoms or in ident i fy ing the 

most l ike ly directions of deformation or electric 

current in a crystal. The model is indispensable 

in representing the possible arrangement of 

atoms in unidentif ied or l i t t le studied crystals 

on the basis of experimental data and so-called 

general considerations. This technique of model-

ing w i th balls and wires aided in one of the most 

important discoveries of the twent ieth century, 

the identif icat ion of the structure of the DNA 
molecule, which certainly speaks well for the 

usefulness of the dead model! 

^ O u r objective, however, is to s imulate a ' l ive ' 

rather than a 'dead' crystal. Obvious ly , to do so, 

we need to s imulate the interaction of atoms i n 

crystal, to revital ize the interaction that is fro-

zen i n the wires and balls. 

The Interaction of Atoms in Crystal 

Perhaps the most important characteristic of 

such interact ion stems directly from the simple 

fact that the distance between two neighbouring 

atoms in real crystal has a definite value at a 

constant temperature. (We are speaking, of course, 
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about the distance between the positions around 
which atoms fluctuate in heat induced mo-
tion. The amplitude of these fluctuations is con-
siderably smaller than the distance between 
atoms.) The distance has a definite value since if 
we try to stretch i t , the atoms resist the effort and 
attract one another, and if we try to reduce the 
distance, the atoms repel each other. The fact 
that this distance is determinate allows us to 
conclude that atomic interaction is character-
ized by attraction and repulsion simultaneously. 
At a certain distance between atoms (we call it 
determinate), the forces of attraction and repul-
sion become equivalent in absolute values. The 
atoms in the lattice are located at exactly this 
distance. 

I t would be useful to be able to simulate the 
competition of attractive and repulsive forces. 
Such a technique would revitalize atomic inter-
action in crystal. The authors of the BLN model 
created just such a method. Instead of wooden and 
clay balls, they used t iny soap bubbles. 

The Interaction of Soap Bubbles 
on Water Surface 

Two soap bubbles on the surface of a body 
of water are not indifferent to each other: they 
are first attracted to one another but, after touch-
ing, are repelled. This phenomenon can be ob-
served in a very simple experiment, for which we 
wi l l need a shallow bowl, a needle from a syr-
inge, the inner balloon from a volley ball, and an 
adjustable elamp to control the compression of 
the nozzle of the balloon. Fi l l the bowl with 
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soapy water almost to the top, and add a few drops 

of glycerol to stabil ize the bubbles tha t we w i l l 

blow onto the surface of the water. Inflate the 

bal loon. Then clamp the nozzle, and insert the 

needle in to i t (the but t end first, of course). Im-

merse the other end of the needle in to the water 

(not deeply) and release the c lamping pressure 

sl ight ly (Fig. 70). The air that escapes the nee-

dle at regular intervals wi l l develop into identical 

soap bubbles. W e shal l need many such bubbles 

in future experiments, but for this first experi-

ment , try to make only two bubbles, some dis-

tance from one another. I f you are not successful 

immediate ly , try again. Y o u should succeed by 

the fourth or fifth t ime, at least. Bubbles 1-2 m m 

in diameter work the best. 

Once the bubbles are made, you can watch 

their movements. The bubbles w i l l move (without 

our interference) towards one another, slowly at 

first and then more rapid ly . W h e n they col l ide, 

they do not touch at a single po int but make dents 

on the surface. The interaction of a pair of iden-

tical bubbles w i l l vary from that of a pair of bub-

bles of different size. Wa tch ! 

Now let us consider the origin of the force that 

drives the bubbles together spontaneously. Th ink 

Fig. 70 
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of two matchsticks ly ing on the surface of the wa-

ter. Since the bubbles and the matchsticks are 

both soaked by the water, the nature of their in-

teraction is generally the same. Two bubbles float-

ing close together form a very complex surface 

wi th the water, however, whereas that of the 

two matchsticks is much simpler and, thus, eas-

ier to study (Fig. 71). The force that brings the 

Tl 7 r 
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Fig. 71 

two floating matchsticks together develops as fol-

lows. Water soaks the matchsticks, and the sur-

face of the water near the sticks is, therefore, 

curved. This curvature generates force that acts 

upon the l iqu id . The force is determined by sur-

face tension and directed, i n this case, upward 

(we shall assume the matchsticks are completely 

soaked). Under the effect of this force, the l i qu id 

rises along the sides of the matchsticks, the rise 

being more pronounced in the region between the 

sticks (Fig. 71). The l iqu id appears to stretch, 

and the pressure in the l iqu id drops relative to 

the atmospheric pressure, by an addi t ional pres-

sure Ap = ^r- = — , where o is the coefficient of 

^ d r 

surface tension, d is the distance between the 

matchsticks, and r = d!2 is the curvature radius of 

the surface of the l i qu id . Consequently, the ab-

solute value of the pressure of the l i qu id on the 

matchsticks in the area between them is less t h an 
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the atmospheric pressure that acts upon the sticks 

from the outside. Thus, the absolute value of the 

force that draws the sticks together is 

i n . a c 2o , , 4a2l 1 
|F| = A p S = — M = t t j y f ~ . y 

From this we can predict an interesting phenom-

enon. Since 1 Id2, in a viscous environment 

the matchsticks should draw together w i th a ve-

locity that increases as the distance between them 

decreases. The bubbles also accelerate as they 

draw closer (Fig. 72). W e filmed the movement of 

the bubbles in our laboratory by placing a movie 

camera over the bowl containing the soap solu-

tion. As soon as the bubbles started moving , we 

switched the camera on (Fig. 73). W e were able 

to watch the bubbles drawing together right up 

to their coll ision. Once they have coll ided, a re-

pulsive force starts acting. The force is caused 

by an increase of gas pressure in the mu tua l l y 

compressed bubbles (Fig. 74), which pushes the 

bubbles apart . 

Soap bubbles are apparently suitable crystal 

models, if we create a number of ident ical bub-

bles on the surface of the soap solution rather than 
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Simply one or two. If the radius of a bubble is 
R = 5 X 10-2 cm, then N~ (Rp/R)2~ 4 X 
X 104 bubbles can fit on the surface of a soap so-
lution on an ordinary dinner plate whose radius 
is R p « 10 cm. Such a raft of bubbles, con-
tained by attractive and repulsive forces, is ajtwo-
dimensional model of crystal. The authors of 
this very beautiful model have shown, for exam-
ple, that bubbles whose radius is 1 0 c m 

Fig. 74 

interact very similarly to atoms in copper 

crystals. 

The Model in Action 

The film of the BLN model in action is inter-
esting since it shows an ideal crystal, a crystal 
with moving and interacting defects, and many 
other simple and complex processes that develop 
in a real crystal. In an article, however, it is on-
ly possible to show a few photographs to illus-
trate the possibilities of the model. 
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The B L N model can be used to verify certain 

corollaries to the theory of crystal that is abso-

lutely free of defects, i.e. the so-called ideal crys-

tal . I t is almost impossible to obtain such a crys-

tal in nature, but i t proved rather simple and 

easy to construct one made of bubbles (Fig. 75). 

One of the most common defects in crystal is 

a vacant position at a point in the lattice, which 

is not filled by an atom. Physicists call this phe-

nomenon a vacancy. I n the B L N model a vacancy 

is represented by an exploded bubble (Fig. 76). 

As both common sense and experiments w i th real 

crystals lead us to expect, the B L N model shows 

that the volume of a vacancy is a l i t t le less than 

that of an occupied position. When a bubble ex-

plodes, neighbouring bubbles move sl ightly in-

to the hole left by the explosion and reduce its 

size. This is almost impossible to detect w i th the 

naked eye, but if we project a photograph of the 

bubbles onto a screen and carefully measure the 

distances between bubbles, we can see that the 

vacancy is somewhat compressed in comparison 

with an occupied posit ion. For physicists this is 

evidence of both a qual i tat ive and a quantita-

tive change. 

Very often, crystal contains an impur i ty , in-

troduced in the early stages of its history, that 

deforms its structure. To solve many problems of 

crystal physics, i t is very important to know how 

the atoms surrounding the impur i ty have changed 

position. Inc identa l ly , the presence of an impu-

rity is left not only by the nearest neighbours but 

also by the atoms a considerable distance from it . 

The B L N model reflects this clearly (Fig. 76). 

Most crystalline bodies are represented by po-
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lycrystals made of many smal l , randomly oriented 

crystals separated by boundaries. W e expect many 

properties of the polycrystals (such as mechan-

ical strength or electrical resistance) to depend 

on the structure of the boundaries, and, i n fact, 

the B L N model bears this out. I t showed crystal 

physicists that the structure of such boundaries 

varies according to the mu tua l orientation of 

boundary crystals, the presence of impurit ies at 

the boundary, and many other factors. Some parts 

of the polycrystals (grains), for example, may 

enlarge at the expense of others. As a result, aver-

age grain size increases. This process, called re-

crystall ization, develops for a very explicit rea-

son: the greater the size of the grain, the less its 

total boundary surface area, which means that 

it has lower excess energy l inked to the bounda-

ries. The energy of a polycrystal is reduced in re-

crystall ization, and, therefore, the process may 

occur spontaneously (since it moves the system 

to a more stable equ i l ibr ium, at which energy 

storage is m in ima l ) . The series of photographs in 

Fig. 77 illustrates a large grain 'devouring' a 

smaller grain inside i t i n successive stages. 

The moving boundary between the grains ap-

pears to 'swallow' the vacancies i t comes across 

(this was predicted by theorists and carefully 

studied by experimenters in real crystals). The 

boundary does not change its structure in this 

process, as the B L N model clearly il lustrates 

(Fig. 78). 

Restrictions of the B L N Model 

W i t hou t depreciating the usefulness of the 

B L N model, we should point out that it does 
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have drawbacks. The model can s imulate only 

one structure—a two-dimensional, hexagonal, and 

closely packed crystal. Bu t real crystals have 

a variety of structures. I n this respect, the dead 

model has infinitely more potent ia l because 

atoms can be arranged in i t i n many differ-

ent ways, and, consequently, any structure can 

be simulated. The B L N model i n its contempora-

ry modification is severely restricted by its two-

dii lensional ity. Its authors tried to make a three-

di lensional (multi layer) bubble model , but its 

op jrat ion was difficult, and the model was finally 

re ected. I n our laboratory we bu i l t both two- and 

three-dimensional models and found the latter 

to be impract ical . Despite these and other weak-

nesses, however, the B L N model is an indispen-

sable aid in the study of crystals. 

Determining the Poles of a Magnet 

by B. Aleinikov 

At first glance it may seem simple to determine 

the poles of a magnet. Bu t because we cannot 

be sure that the poles of a given magnet have 

not s imply been painted to make them look 

different, i .e. wi thout reference to their true 

magnet ism, the question is more complicated 

than it appears. Occasionally, magnets are not 

marked at a l l , in which case we need a method 

to differentiate the positive from the negative 

pole. For this experiment, we need a permanent 

horseshoe magnet (the poles need not be marked; 

in fact, it is even more challenging if they are 

not) and . . . a television set. I t is best to conduct 

7* 
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the experiment in the dayt ime, when a test 

pattern for tun ing the television is broadcast. 

Turn the television set on, and put your mag-

net against the screen, as shown in Fig. 79. The 

image wi l l immediate ly become distorted. The 

smal l circle in the center of the test pattern wi l l 

shift noticeably upward or downward, depending 

on the position of the poles. 

A n image on the television screen is produced 

by an electron beam directed from inside the pic-

ture tube towards the viewer. Our magnet devi-

ates the electrons emitted, and the image is 

distorted. The direction in which the magnetic 

field deviates the mov ing charge is determined by 

the left-hand rule. I f the palm is positioned so 

that the lines of force enter i t , the fingers when ex-

tended indicate the direction of the current. I n 

this position, the t humb when held at a right 

angle to the fingers, w i l l show the direction in 

F B 

Fig. 79 
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which the mov ing charge is deviated. The lines 

of force go from the northern to the southern 

pole of the magnet. The direction of current ac-

cording to the left-hand rule is the so-called "tech-

nical" direction from plus to minus in which po-

sitively charged particles would move. I n the 

cathode tube, however, the electrons move and 

are directed towards us. This is the equivalent 

of positive charges heading away from us. There-

fore, the extended fingers of the left hand should 

be directed towards the screen. The rest is 

clear. By the displacement of the central circle, 

we can determine whether the northern or the 

southern pole of the magnet been placed against 

the screen. 

I t is also possible to identify poles of an un-

marked battery wi th the help of a television. For 

this experiment, in addit ion to a television, we 

need a battery, an electric magnet w i th an arched 

core, a resistor, and a conductor. Connect the bat-

tery in series to the electromagnet, and the resis-

tor, rated to l im i t the current to admissible level. 

Hold the electromagnet near the screen, and iden-

tify its poles using the left-hand rule. Then use 

the corkscrew rule to determine the direction of 

the current and, consequently, the poles of the 

battery. 

A Peculiar Pendulum 

by N. Minz 

The fami l iar simple pendulum does not change 

the plane in which it swings. This property of 

the pendulum was used in a well-known demon-
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stration of the Earth 's rotat ion, i.e. the Foucault 

pendulum. The pendu lum suspended on a long 

wire oscillates. A circle under it is marked as a 

clock face. Since the plane of oscillations rela-

t ive to the motionless stars does not shift , wh i le 

the Earth rotates on its axis, the pendulum passes 

through markings on the clock in succession. 

At either of the Earth 's pole, the circle under the 

Fig. 80 

pendulum makes one complete rotation i n twen-

ty-four hours. This experiment was carried out 

by the French physicist L . Foucault in 1851, 

when a pendulum 67 metres long was suspended 

from the cupola of the Pantheon in Paris. 

Do al l pendulums keep the same plane of oscil-

lation? The suspension, after a l l , allows oscilla-

tions in any vertical plane. To make the pendu-

lum shown in Fig. 80a, fold a string i n hal f , and 

attach another string in the midd le . Tie the loose 

end of the second string to a spoon, a pair of 

scissors, or any other object, and your pendulum 

is ready. (The vertical suspension should be long-

er or at least equal in length to that of the first 

string.) 
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Tack the ends of the horizontal string between 

the jambs of a doorway. Now, pu l l the pendulum 

back (at rest, i t is i n the posit ion of equilibri-

um) , and release i t . The pendu lum w i l l describe 

an ellipse that constantly changes shape, prolat-

ing to one side or the other. W h y does it behave 

this way? 

A single suspension pendulum (Fig. 806) has 

an undetermined plane of osci l lat ion. This means 

that regardless of the in i t i a l deviat ion of the 

pendulum, a l l the forces influencing it l ie in one 

plane. Be careful, however, not to propel it 

sideways when setting it free. 

Now let us draw a plane through the in i t i a l 

and deviated positions of the pendu lum. Obvi-

ously, both the gravity force mg, and the tension 

force of the string T l ie in this plane. Conse-

quent ly , the resultant of the two forces, which 

makes the pendu lum oscillate, acts i n the same 

plane. Thus, since there is no force to propel the 

pendulum out of the plane, i t keeps its p lane of 

osci l lat ion. 

Our pendu lum is quite another th ing . I n this 

case, the in i t i a l plane of osci l lat ion is deter-

mined by the attachment of the horizontal string 

and by the p l umb l ine of the vertical string. There-

fore, the pendu lum is deviated from the very 

beginning so that i t lies outside of the p lane .* 

The tension force (Fig. 80c) has a component 

perpendicular to the in i t i a l p lane, and the ac-

* Of course, if the deviation of the pendulum in the plane 
is strictly perpendicular to the plane of suspension, the 
pendulum will oscillate in this plane only. In practice, 
however, a departure from this plane and velocity direct-
ed away from the plane always exist. 
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t ion of this component forces the pendnlum out of 

the plane. Since the tension force varies, its per-

pendicular component also varies. As it swings 

to the opposite side, the pendulum pulls the other 

half of the horizontal string taut . This develops a 

force that acts in the opposite direction. At the 

Fig. 81 Fig. 82 

same t ime, as the experiment shows, the pendu-

lum oscillates in two perpendicular planes. 

The curves described by our pendulum are 

called Lissajous figures, after the French physicist 

who was the first to describe them in 1863. A 

Lissajous figure results from the combinat ion of 

two perpendicular oscillations. The figure may 

be rather complicated, especially if the frequen-

cies of longi tudinal and lat i tudinal oscillations 

are close. If the frequencies are the same, the re-

sultant trajectory wi l l be an ellipse. Figure 

81 shows the figure drawn by a pendulum whose 

motion can he described as x = sin 3t, y —-

sin 51. Figure 82 shows the oscillations des-

cribed as x = sin 31, y = sin 41, 
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The ratio of the frequencies can he varied by 

varying the ratio of the length of the vertical 

and horizontal strings. Al though it is fair ly dif-

ficult to calculate the frequencies of pendulum os-

cil lat ions, the figures drawn by the pendulum 

can be demonstrated rather easily. To make the 

Lissajous figures visible, tie a smal l bucket wi th 

a perforated bottom to the pendu lum. F i l l the 

bucket with sand, and put a piece of dark card-

board under it on the floor. The pendulum wi l l 

draw a clear trajectory of its mot ion . 

Photographs of the motion of the pendulum can 

also be made. Pa int a weight or a smal l , heavy 

ball whi le , and make the suspension of dark 

string. Put a sheet of dark paper 011 the floor, the 

paper should be mat, since glossy paper reflects 

l ight and would spoil the pictures. Set the cam-

era above the pendulum, wi th the lens placed 

horizontal ly. If the exposure is long enough, the 

pictures wi l l show clear trajectories. Figures 83 

and 84 show trajectories photographed in this way, 
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Changes in the direction of the oscillations 

are obvious. The change is especially sudden 

in Fig. 83. The exposures of the two photographs 

were different, which is obvious from the differ-

ent lengths of the trajectories. The curves seem 

to be inscribed w i th in a parallelogram, al though 

in reality, they should be inscribed w i t h i n a rec-

tangle. W e did not get a rectangle s imply be-

cause the plane of our camera was not strictly 

horizontal . 

A reasonably correct trajectory can be obtained 

i n experiments wi th a pendulum if damp ing 

is insignificant. The oscillations of a pendu lum 

wi th low mass and large volume w i l l damp quick-

ly. Such a pendu lum wi l l swing several t imes 

wi th quickly d imin ish ing ampl i tude. Natura l ly 

changes i n the oscillations of a pendulum w i th 

such strong at tenuat ion can hardly be photo-

graphed. 

Lissajous figures are common wi th perpendicu-

lar oscillations. They are unavoidable, for in-

stance, in tun ing oscillographs. 

Lissajous Figures 

by N. Minz 

The simplest oscillations of a body are those in 

which the deviat ion of the body from its equi-

l ibr ium position x is described as 

x = a sin (cot -+- cp) 

where a is the ampl i tude , w is the frequency, and 

9 is the in i t i a l phase of oscil lation. Such oscilla-
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tions are called harmonic. A simple pendu lum, 

a weight on a spring, or voltage in an electric 

circuit can oscillate harmonical ly . 

I n this article we shall discuss a body wi th two 

simultaneous harmonic oscillations. I f both oscil-

lations occur along the same straight l ine, the re-

sul tant equation of the mot ion of the body w i l l 

be a sum of the equations of each mot ion: 

x = At sin (ant + cpj) + A2 sin (oy2t + cp2) 

I t is easy to make a graph of the body displace-

ment from equi l ibr ium over t ime. For this, the 

ordinates of the curves related to the first and 

second motions should be added. Figure 85 

il lustrates how two harmonic oscillations can be 
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added (solid sinusoids). The broken l ine repre-

sents the result ing oscil lation, which is no 

longer harmonic. 

More complicated trajectories appear if two 

mutua l ly perpendicular oscillations are added. 

The body in Fig. 86 moves along such a trajecto-

ry. Its form depends on the ratios of frequencies, 

amplitudes, and phases of the two mu tua l l y per-

pendicular oscillations. As we know, such trajec-

tories are called Lissajous figures. The setup used 

by Lissajous in his experiments is shown i n Fig. 

87. The tun ing fork T' oscillates in a horizontal 

plane, whereas T is vertical. A l ight beam pas-

sing through a lens is reflected by a mirror at-

tached to T' towards a second mirror fixed on T. 

The reflection of the second mirror is seen on a 

screen. I f only one tun ing fork oscillates, the 

l ight spot on the screen w i l l move along a straight 

l ine. I f both tun ing forks oscillate, the spot w i l l 

draw intricate trajectories. 

The trajectory of a body with two simulta-

neous, mutua l ly perpendicular oscillations is de-

scribed by a system of equations 

where x and y are the projections of the body dis-

placement on X and Y axes. 

For s impl ic i ty , assume (fi = <p2 = 0 a n d ®i = 

= co2 = (D. Then 

(1) 

x — A{ sin at, 

y — A2 sin cot. 
(2) 
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Fig. 87 
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A* 

Thus, y = - j - x. Consequently, Eq. (2) de-

scribes a straight line segment. Slope a with 

respect to X axis is 

. A« 
tan a = , 

Now let ? ! = q>; + Then 

x = At cos ( (O j f -f- t p j ) , 1 

y = A2 sin (co2* + <p2). J 

Consider first the simplest case, where A\ = 

= A 2, <pl = <p2 = 0 and coi = <a2 = co, that is 

x = A cos coi, I 

y = A sin wt. J ^ 

A point with x and y coordinates determined by 
the above equations makes a circle of A radius. 
And, in fact, x2 + y2 = A2 cos2 at + A2 sin2 at = 
= A2 , which means that the trajectory of mo-
tion is a circle. 

Now let At =^=A2. Let us plot a trajectory for 
A1 = 1 and A2 = 2. At the moment of maximal 
displacement, x — Ai = 1, that is, cos cot — 
= 1, at = 0. Consequently, y = 2 sin cot = 0. 
Similarly, when x = 0, y equals two, and when 

x = y equals ]/A2, and so on. 

The graph plotted with these coordinates wil l 
be an ellipse whose major semiaxis is A2 and 
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whose minor semiaxis is A t h a t is, the ellipse 
elongated along Y axis (Fig. 88a) * 

I t is easy to show that when Ax = 2 and A 2 = 
= 1, we get an ellipse elongated along X (Fig. 
886). Clearly, by changing the amplitude ratio, 
we can get different ellipses. 

Now let a>x = 2(0, (o2 — a, <pj = 0 and <p2 = 

} 

(\ 
) 

l r \\ J' e 

= 0. The system of equations (3) wi l l then be-

come 

x = Ai cos 2(01, 
y — A 2 sin tot. 

Transform the equation with respect to x in the 

following way 

x = Ai (cos2 cat — sin* cot) = 

= At ( 1-2s in* (o t ) = At ( l — 2-fj-). 

• The fact that the system of equations 
x = Ay cos coi 
y = A 2 sin cot 
describes an ellipse can be shown analytically: 

-~T + 4 r = cos* at + sin* cot = 1, 

i.e., a point with coordinates x and y lies on the ellipse. 
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This curve is part of a parabola with its axis along 

X and the apex at x = Aj (Fig. 89). Thus, we 

have an open curve. 

Now let us check the effects of the frequency on 

the shape of the trajectory. W e wil l assign equal 

amplitudes to the lateral and longi tudinal oscil-

lations described by system (3). 

Let us plot curves, for example, described by 

the fol lowing equations: 

x = A cos cot, y = A sin 2oit, 

x = A cos at, y = A sin 4cot. 

The easiest way to do this is to draw a circle of 

A radius (Fig. 90) and mark the points corre-

sponding to angles cut, which equal 0, 

it 5n 3n 7n „ rp , . ,, . , 
—, -5-, -r-, -5-, j t , . . . , 2 n . t o determine the points 
z o 4 o 

with coordinates x = A cos cot and y — A sin 2cot, 

remember that for the circle whose radius is 

equal to un i ty (r = 1) the cos cot is numerical ly 

equal to a projection of the vector radius /• (ait) 
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onto X , whereas the sin co I is equal to the projec-

tion onto Y. Since we have drawn a circle of A 

radius, the coordinates x and y of each point of 

the circle are the projections of the vector radii 

Fig. 91 

of the points onto X and Y . Once we have de-

termined all the points by their coordinates, we 

can connect them with a solid line (Fig. 90). 

91fl, h). 
The figure in Fig. 92 is open. I t is described by 

8 - 0 1 5 4 4 
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the following system of equations 

x = cos 2o)t, 

y = sin 3cot. 

When do open figures occur? Are there any com-

mon regularities in their origin? Consider the 

following equations 

x — cos p<ot, 

y = A2 sin qat. 

First, note that at the point where the curve re-

verses along the same trajectory, the velocities 

of the body along the X and Y axes become equal 

to zero simultaneously. The body moving along 

the curve stops at exactly this moment, and then 

starts moving back. I f x = Aj cos pcot, then 

A i cos p w t i — A t cos pcotj 

„ . . pw<2 + • put2 — pat, 
— 2/1, S1U jr-*1 — Sill — — 

t% — tx 

When t2 ~ tx — t (the difference between t2 

and tf is small) , 

pbdtn—ptotj pC0f3— pdttx 
sin « . 

As a result, 

vx = — Axpa sin pcot. 

Simi lar ly , for vv 

vu = A2 qto cos q(ot. 
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When the velocities vx and are equal to zero, 

vx ~ 0 if pat = kn, 

vy = 0 if gwt =-^--f mn . 

From these conditions it becomes obvious that 

Lissajous figure are open when 

P _ 2k 
q ~ 2 m + 1 " 

The curve in Fig. 92, for example, meets this con-

di t ion . 

Lissajous figure can be observed on the screen 

of an oscilloscope. A vertical sweep indicates 

one harmonic oscillation, whereas another oscil-

lation appears on a horizontal sweep. Their to-

tal may assume different forms if the frequency 

of the alternating voltage at the plate of the oscil-

loscope is varied. 

Anyone can make a simple device for observ-

ing and photographing Lissajous figures. Twist 

a simple meta l ruler so that the plane of one half 

of the ruler is perpendicular to the plane of the 

other half . Fix one of the ends of the ruler in a 

bench vice. W h e n the free end is depressed and 

then released, it wi l l draw intricate Lissajous 

figures in the air. 

The mot ion of the free end of the ruler is the 

sum of the independent oscillations of its two 

parts. The first section is measured from the vice 

to the bend in the ruler and the second from the 

bend to the free end. The oscil lation of each part 

is perpendicular to the plane of the vibrat ing 

section. Since the bend angle of the ruler is-77, 

the oscillations are mutua l ly perpendicular. The 

8 * 
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shape of the trajectory of the end depends on the 

length and the wid th of the rnler, as well as on 

the place of bend. 

The same ruler can be used to obtain different 

figures, to vary vertical and horizontal oscilla-

tion ratios, s imply clamp the ruler at different 

places. Since the frequency of osciIlations]depends 

on the length of the ruler, you can vary the fre-

Fig. 93 

quency ratio of mutua l ly perpendicular oscil-

lations of the end of the ruler by changing the ra-

tio of the length of its parts. This wil l result in 

different trajectories of the, end. 

To photograph the figures, attach the light 

bulb from a flashlight to the free end of the ruler. 

Connect the bulb to a battery by wires placed 

along the ruler (see Fig. 93). Place this complex 

pendulum in a dark room, and experiment a few 

times to find the right exposure l ime for photo-

graphs. A fair ly long exposure wi l l probably 
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work best. Figure 94 shows photograph obtained 

exactly in this way. 

Now try s imi lar experiments for yourself. 

EXERCISES 

1. Prove that all curves described by the following system 
of equations are open: 

x ~ A j cos putt, y = A2 cos qat 
2. Derive an equation for a curve with the following 
parameters 

X = A J COS lot, y = A 2 cos 2u>t 

Waves in a Flat Plate 

(Interference) 

by A. Kosourov 

Wave propagation is perhaps the most univer-

sal phenomenon in nature. Water , waves, sound, 

l ight and radio, even deformation transfer from 

one part of a solid to another are examples of 

this phenomenon. According to quantum mechan-

ics, the mot ion of microscopic particles is also 

controlled by the laws of wave propagation. The 

physical nature, velocity of propagation, fre-

quency and wavelength of all these waves are 

different, but despite these differences, the mo-

tion of all waves is similar in many respects. 

The laws of one kind of wave motion can be ap-

plied almost without modification to waves, of 

another nature. The most convenient way to stu-

dy these laws is to study waves on the surface of 

a body of water. 
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W h a t is a wave? Throw a stone into a pond. 

The calm horizontal surface of the pond w i l l de-

velop circles that ripple outwards. Points on the 

surface of the water reached by the wave wi l l 

begin to oscillate relative to the position of equi-

l ibr ium, which corresponds to the horizontal 

surface of the water. The farther a point is from 

the centre of the circle, the longer the point wi l l 

take to ' learn' about the stone that has been 

thrown. The disturbance travels at a determi-

nate speed. Points that are reached simultaneously 

by the disturbance are said to be in the same stage 

or phase of oscillation. 

A l l waves disturb some physical object wi th 

their action by causing the object to deviate 

from the state of equi l ibr ium. Sound waves, for 

example, cause the periodic rise and drop of pres-

sure. Rad io waves and l ight cause rapid changes 

of tension in electric and magnetic fields. The 

properties of all media wi thout exception are 

such that a disturbance, which originates in a 

specific area, propagates by passing from one 

point to another wi th a final speed. This speed 

depends on the nature of the disturbance and the 

med ium. 

The disturbance that generates a wave must 

have a source, that is an external cause that 

breaks the equi l ibr ium in a certain area of the 

medium. A small disturbance, a stone thrown into 

water, for example, radiates spherical waves (in 

this case, circles on the water surface) that travel 

radial ly in a uniform medium (a medium in which 

wave velocity does not depend on the direction 

of its propagation). Such sources are called 

point sources. 
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One of the ma in principles of elementary wave 

theory is the principle of wave independence, al-

so called the principle of superposition. The prin-

ciple states that a disturbance caused by a wave 

at a point of observation is not influenced by 

other waves passing through the same point . The 

principle of superposition is, in fact, a simple 

rule for determining the summary effect of waves 

from different sources. A summary oscil lation is 

s imply a sum of the oscillations caused by each 

source independently. 

Interference is a characteristic feature of wave 

processes. Interference is the combinat ion of 

phenomena that develop in a medium in which 

waves propagating from two or more sources os-

cil late synchronously. The oscillations of some 

points of the med ium may be stronger or weaker 

under the action of the two simultaneous sources 

than they would be under the effect of either 

source in isolation. Synchronized waves may even 

suppress each other completely. 

Let us try to produce interference that we can 

see with our own eyes. An experienced observer 

can easily see the interference caused by the 

waves from two stones thrown into a pond. This 

method is unsuitable for study of interference, 

however. W e need, instead, a stable picture of 

interfering waves in the laboratory. 

The first th ing we wi l l need for this experi-

ment is a vessel for water. The vessel should 

have gently sloping walls to avoid masking waves 

from the source wi th reflections from the walls. 

A shallow saucer wil l work well, if the water near-

ly reaches the r im, in which case the waves roll 

onto the walls and are damped quickly , almost 
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without reflections. An electric hell without its 

cap is a good wave generator. W i r e the hammer of 

the hell , and attach a cork bal l to the wire. This 

cork wi l l be our wave source. Be sure that the 

electric wires are well insulated. 

The bell should be mounted on a swing above 

the saucer so that it can be lowered into the wa-

ter at the r im of the saucer. Power should be fur-

nished by an autotransformer, which wi l l en-

able us to vary the ampl i tude of the oscillations. 

The autotransformer from either a toy electric 

train or an electric burning-out machine wi l l 

serve this purpose. When we switch on the setup, 

wo wi l l see circular waves on the water surface. 

The average distance between neighbouring crests, 

that is, the wavelength, w i l l be about 1 cm 

(Fig. 95). 

The waves can best be observed by watching 

the shadows on the bottom of the saucer under di-

rect sunl ight or strong lampl ight . Every wave 

acts l ike a cylindrical lens and casts a bright band 

on the bottom that repeats the configuration of 

the wave front. Since the waves move at about 

10 centimetres per second, however, they may 

seem to merge if you keep your eyes fixed on the 

plate. They are visible only close to the source 

where their ampl i tude is h igh, and you wi l l need 

to turn your head quickly to trace ind iv idua l 

waves on the surface, iust as you would need to 

move your head rapidly to trace the motion of 

ind iv idua l spokes in a rotat ing wheel. The waves 

are very clear on the mat plate of a camera, es-

pecially one with a large format. By hold ing 

such a camera by hand and rocking it gently, you 

can easily find a position from which the waves, 
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which appear to move very slowly can be seen 

over the entire surface. A mirror can also be used 

to watch the water surface. The most expedient 

way to observe the waves is wi th a stroboscope. 

If we i l l uminate the setup with short flashes of 

Fig. 95 

l ight with the same frequency as the wave gener-

ator, the wave wi l l move over one wavelength 

from one flash to the next, and as a result, the 

wave picture wi l l appear stationary. To obtain this 

effect, s imply wire a small lamp into the circuit , 

parallel to the electric bell magnet winding. At 

a distance of 0.5-1 m5 the lamp wi l l i l l uminate 
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the saucer uni formly, and the stationary wave 

picture w i l l appear clearly. I t is better to use di-

rect sunl ight for photographs. 

Now replace the single cork ba l l on the ham-

mer of the bell wi th a wire fork to which two 

pieces of cork have been attached at the ends. The 

distance between the ends should be 2-3 cm. I f 

the corks touch the water surface simultaneously, 

you wi l l get two sources of waves that oscillate 

not only synchronously, i.e. i n t ime, but in 

phase, which means that the waves from the two 

sources wi l l appear in the same instance of t ime. 

The picture wi l l look approximately like in Fig. 

96 (here 2d/K = 4). The fan-shaped distr ibution 

of high-amplitude zones includes intermittent 

'silence' zones. The central zone of high ampli-

tudes is perpendicular to the l ine connecting the 

sources, and both types of zones are located be-

tween the sources. 

According to the interference picture, the dis-

tance between neighbouring peaks on the line 

connecting the sources is one-half of the distance 

between two crests, that is, one-half of a wave-

length. I f we change the distance between the 

sources, the number of high-amplitude zone wi l l 

change too. I n Fig. 97 the characteristic ratio is 

2dl% = 2. The larger the distance between sources, 

the more 'feathers' we have in our fan. Bu t 

the distance between crests on the l ine connecting 

the sources is always one-half of a wavelength. 

Thus, the total number of high-amplitude zones 

wi l l always be twice the number of wavelengths 

in the distance between sources. Hence, we can 

conclude that if this distance is less than one-

half of a wavelength, the waves w i l l not inter-
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fere at a l l . Such sources acl as one, producing a 

single system of circular waves. This can be de-

monstrated by gradually reducing the distance 

between sources. Note also that if a wavefront 

continues from a high-amplitude zone to a neigh-

bouring zone, it wi l l pass from a crest to a trough. 

In other words, as a wave passes through the ze-

ro phase, the phase of the wave changes by one-

half of a complete cycle. 

Now imagine that instead of two cork balls 

creating waves in the water we have two l ight 

sources emit t ing l ight waves. I f we place a screen 

perpendicular to the water surface in the path 

of the lightwaves, we wi l l see i l luminated places, 

which indicate high-amplitude zones, and shad-

ows. Now let us try to explain these dark and 

light interference bands. 

Draw the two wave systems on paper, as if 

the waves were frozen in their tracks (Fig. 98). 

Indicate the crests wi th l ight , solid lines and the 

troughs wi th broken lines. Assign every wave a 

number, g iv ing identical numbers to those that 

originate from the sources simultaneously. As is 

clear from the drawing, waves wi th the same num-

ber covered the distance equivalent for both 

sources simultaneously. Obviously, this occurs 

because al l points at this distance are reached by 

waves that travel the same distance. By applying 

the law of superposition, we can conclude that 

the heights of the crests and depths of the 

troughs wi l l double at this distance. The resulting 

crests should be marked in the drawing with 

heavy, solid lines; mark the troughs with heavy, 

broken lines. To the right and left of line 00 are 

points at which the crests of one system of waves 
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coincide wi th the troughs of another. The waves 

from one source cause upward deviat ion at these 

points, whi le the waves from the second source 

cause downward deviat ion, and, as a result, to-

0 

Fig. 98 

ta l deviat ion is close to zero. Connect all "such 

points wi th a solid l ine. I f we analyse the numbers 

of the crests and troughs, we wi l l see that all the 

points of the right l ine are reached by waves from 

the left, which travel half a wavelength farther 

than waves from the right. 
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To the right and left of the zero lines lie the 

points of intersection of the first crest wi th the 

second, the second wi th the th ird , and so on. I t 

is easy to see that these are max ima points. I f 

we connect these points, we get a l ine that is 

reached by one wave system with the delay of 

one wavelength. 

By analysing the drawing further we can find 

all the zero and maxima lines. Such lines are hy-

perbolas. 

I t is now clear why the distance between neigh-

bouring max ima on the line connecting the 

sources equals one-half a wavelength. Indeed, the 

midpoint of this l ine is reached by waves of the 

I wo systems, which move in the same phase and 

enhance one another. I f we move off the point by 

one-half a wavelength, the distance travelled by 

one wave wil l increase by one-half a wavelength, 

whereas the distance covered by another wi l l 

decrease by the same value. The difference be-

tween the distances travelled by both waves wi l l 

equal one wavelength, and the waves wil l en-

hance one another again. This w i l l reoccur every 

half wavelength. 

A max imum observed when the difference in 

the distance travelled is zero is called the zero 

max imum or the zero order of interference. Ma-

xima observed when the distance is one wave-

length are called first-order interference, and so 

on. A max ima l order of interference is deter-

mined by the integer closest to 2d /K , where d is the 

distance between sources and A, is the wavelength. 

Now try to predict from the drawing or from ex-

periments what changes w i l l occur if one of the 

sources radiates waves with half a period (or a 
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fraction of a period) delay. W h a t wil l happen if 

the phase shift is random? To study this pheno-

menon experimentally, s imply make the ends of 

the wire fork different lengths. 

How to Make a Ripple Tank 

to Examine Wave Phenomena* 

by C. L. Stong 

Waves of one kind or another are found at work 

everywhere in the universe, ranging from gamma 

rays of minute wavelength emitted by nuclear 

particles to the immense undulat ions in clouds 

of dust scattered th in ly between the stars. Be-

cause waves of all kinds have in common the func-

tion of carrying energy, it is not surprising that all 

waves behave much alike. They move in straight 

lines and at constant velocities through uni-

form mediums and to some extent change dire-

ction and velocity at junctions where the physi-

cal properties of the mediums change. The part 

of a sound wave in air that strikes a hard object 

such as a brick wal l , for example, bounces back 

to the source as an echo. 

By learning how waves of one kind behave the 

experimenter learns what behaviour to expect of 

others, and problems solved by the study of 

waves in one med ium can be'applied, wi th appro-

priate modification, to those in other mediums. 

The pan of a simple ripple tank that can be 

made in the home consists of a picture frame 6 

* An abridged version of an article that first appeared 
in the November issue of Scientific American for 1962. 
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about five centimeters th ick and 0.6 m 2 square, 

closed at the bottom by a sheet of glass calked to 

bold water, as shown in Fig. 99. The tank is sup-

ported about 60 cm above the floor by four sheet-

metal legs. A source of l ight to cast shadows of 

ripples through the glass onto a screen 9 below is 

provided by a 100-watt clear l amp 5 w i th a 

straight filament. Because the l amp is suspended 

above the tank with the filament axis vertical, the 

end of the filament approximates a point source 

and casts sharp shadows. The l amp , part ly en-

closed by a fireproof cardboard housing 2, is sus-

pended about 60 cm above the tank on a frame-

work of dowels 1. The wave generator hangs on 

rubber bands from a second framework made of 

9 - 0 1 5 4 4 

in ( i ) dowels , (2) a l u m i n i z e d 
c a r d b o a r d , (a) ho l e for 
l i g h t , (4) l V j - v o l t m o t o r 
v i b r a t o r , (5) 100-wat t b a r e 
s t r a i g h t f i l a m e n t l a m p 
w i t h f i l a m e n t v e r t i c a l , (6) 
p i c t u r e f r a m e w i t h g l a s s 
b o t t o m se t in m a s t i c , (7) 
p a r a f f i n re f lec tor , («) a l l i -
g a t o r c l i p a n d s t ee l s p r i n g 
for a d j u s t i n g m o t o r speed , 
(9) w h i t e p a p e r d i s p l a y 
sc reen , (10) s l o t s fo r 
l e v e l i n g 

Fig. 99. Ripple tank 
for demonstrating 
wave behavior: 
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a pair of meta l brackets notched at the upper end 

to receive a wooden crossbar. The distance be-

tween the wave generator and the water can be ad-

justed either by changing the angle of the meta l 

brackets or by l i f t ing the crossbar from the Sup-

porting notches and wind ing the rubber bands up 

or down as required. The agitator of the wave gen-

Fig. 100. Details of ripple generator: 
(J) s h a f t passes t h r o u g h h o l e in screw, (2) eccen t r i c w e i g h t 
f o r a d j u s t i n g a m p l i t u d e of o sc i l l a t i on , (3) l ' / i - v o l t m o t o r 
c l a m p e d in c l o t h e s - p i n , (4) b e a d on w i r e c a n be t u r n e d 
down t o g ive p o i n t source of waves , (5) r u b b e r - b a n d s u p p o r t s 

erator is a rectangular wooden rod. A wooden 

clothespin 3 at i ts center grasps a 1.5 vol t toy 

motor driven by a dry-cell battery. Several glass 

or plastic beads 4 are attached to the agitator by 

stiff wires, bent at right angles, that fit snugly in-

to any of a series of holes spaced about five cen-

timeters apart. Detai ls of the wave generator are 

shown in Fig. 100. Attached to the shaft of the 

motor is an eccentric weight, a 10-24 machine 

screw about 2.5cm long. The shaft 1 runs through 
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a transverse hole drilled near the head of the 
screw, which is locked to the motor by a nut run 
tight against the shaft; another nut 2 is run partly 
up the screw. The speed of the motor is adjusted 
by a simple rheostat: a helical spring of thin 
steel wire (approximately No. 26 gauge) and a 
small alligator clip. One end of the spring is at-
tached to a battery terminal, and the alligator 
clip is made fast to one lead of the motor. The 
desired motor speed is selected by clipping the 
motor lead to the spring at various points deter-
mined experimentally. (A 15-ohm rheostat of 
the kind used in radio sets can be substituted for 
the spring-and-clip arrangement.) 

The inner edges of the tank are lined with four 
lengths of aluminium fly screening 1 7.6 cm wide 
bent into a right angle along their length and cov-
ered with a single layer of cotton gauze bandage 
2, either spiraled around the screening as shown 
in Fig. 101 or draped as a strip over the top. The 
combination of gauze and screening absorbs the 
energy of ripples launched by the generator and 
so prevents reflection at the edges of the tank that 
would otherwise interfere with wave patterns of 
interest. 

The assembled apparatus is placed in opera-
tion by leveling the tank and filling it with water 
to a depth of about 20 mm, turning on the lamp, 
clipping the motor lead to the steel spring and 
adjusting the height of the wave generator unti l 
the tip of one glass bead makes contact with the 
water. The rotation of the eccentric weight makes 
the rectangular bar oscillate and the bead bob 
up and down in the water. The height, or ampli-
tude, of the resulting ripples can be adjusted by 

9* 
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altering the position of the free nut on the ma-
chine screw. The wavelength, which is the distance 
between the crests of adjacent waves, can be al-
tered by changing the speed of the motor. The 
amount of contrast between light and shadow in 
the wave patterns projected on the screen can be 

altered by rotating the lamp. The wave generator 
should be equipped with at least one pair of beads 
so that ripples can be launched from two point 
sources. Waves with straight fronts (analogues 
of plane waves that travel,in mediums of three 
dimensions) are launched by turning the bead sup-
ports up and lowering the rectangular bar into 
the water. 

As an introductory experiment, set up the 
generator to launch plane waves spaced about 
five centimeters from crest to crest. If the appa-
ratus functions properly, the train of ripples will 

(?) w a v e a b s o r b e r , fly screen , 
(2) gauze b a n d a g e , (,?) 
s t r a p i ron , (4) s u p p o r t fo r 
i i g h t source , (S) s u p p o r t fo r 
w a v e g e n e r a t o r , (6) w a t e r , 
(7) g lass , (s) g lass s e t in 
m a s t i c c a l k i n g c o m p o u n d , 
(9) 1C-G a l u m i n i u m legs 

brackets and wave ab-
sorbers: 

Fig. 101. Details of tank 
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flow smoothly across the tank from the generator 

and disappear into the absorbing screen at the 

front edge. Adjust the l amp for max imum contrast. 

Then place a series of paraffin blocks (of the 

k ind sold in grocery stores for sealing jelly), 

butted end to end, diagonal ly across the tank 

at an angle of about 45 degrees. Observe how the 

paraffin barrier reflects waves to one side, as in 

Fig. 102(top). I n part icular, note that the angle 

made between the path of the incident waves and a 

l ine perpendicular to the barrier (0;) equals the 

angle made by the path of the reflected rays and 

the same perpendicular (0r). Set the barrier at 

other angles larger and smaller than 45 degrees 

with respect to the wave generator and also vary 

the wavelength and ampl i tude of the waves. I t 

w i l l be found that the angle of incidence equals 

the angle of reflection whatever the position of 

the barrier, a law of reflection that describes 

waves of al l kinds. 

Next replace the paraffin barrier w i th a slab of 

plate glass about 15 cm wide and 30 cm long and 

supported so that its top surface is about 12 mm 

above the tank floor. Adjust the water level 

un t i l i t is between 1.5 and 3.2 m m above the 

glass and launch a series of plane waves. Observe 

how the waves from the generator slow down 

when they cross the edge of the glass and encoun-

ter shallow water, as shown in Fig. 102 (bottom). 

As a result of the change in speed the waves 

travel i n a new direction above the glass, just 

as a rank of soldiers might do if they marched off 

a dry pavement obl iquely in to a muddy field. I n 

this experiment waves have been diverted from 

their i n i t i a l direction by refraction, an effect 



Fig. 102. W a v e reflection and re f rac t ion : 
t op : (J) wave genera to r , (2) s t r a i g h t ba r r i e r , ( j ) inc iden t 
waves, (4) reflected waves; b o t t o m : (I) wave gene ra to r 
(2) deep w a t e r , (3) sha l low w a t e r , (4) re t rac ted w a v e 
f ron t s , (J) reflected wave f ron t s , (6) Incident wave l ron t s 
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observed in waves of all k inds when they cross 

obl iquely from one med ium to another in which 

they travel at a different velocity. Water waves 

are un ique in that they travel at different speeds 

when the thickness, or depth, of the medium 

changes. To a very good approximation'the ratio of 

wave velocity in shallow and deep water is 

proportional to the ratio of the depths of the 

Fig. 103 

water. This rat io is in effect the "index of refraction" 

of the two "mediums". I n the case of electro-

magnetic waves (such as l ight) or mechanical 

waves (such as sound) the velocity of wave pro-

pagation varies with the density of the mediums. 

The net reflection at the disjunct ion between 

the deep and shallow water can be min imized by 

beveling the edge of the glass (or any other 

smooth, solid material substituted for glass) 

as shown i n Fig. 103. 

W a v e energy can also be focused, dispersed 

and otherwise distributed as desired by barriers 

of appropriate shape, as exemplified by the 

parabolic reflectors used in telescopes, search-

lights, radars and even orchestra shells. The 

effect can be demonstrated i n two dimensions by 

the r ipple tank . Make a barrier of paraffin blocks 

or rubber hose i n the shape of a parabola and 
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direct plane waves toward i t . At every point 

along the barrier the angle made by the incident 

waves and the perpendicular to the parabola is 

such that the reflected wave travels to a common 

point: the focus of the parabola. Conversely, a 

circular wave that originates at the focus reflects 

as a plane wave from the parabolic barrier, as 

shown in Fig. 104 (top). I n this experiment the 

wave was generated by a drop of water. 

Interference effects can be demonstrated in the 

ripple tank by adjusting a pair of beads so that 

they make contact wi th the water about five 

centimeters apart. A typical interference pattern 

made by two beads vibrat ing in step wi th each 

other is shown in Fig. 104 (bottom). Observe 

that max imum ampl i tude occurs along paths 

where the wave crests coincide and that nodes 

appear along paths where crests coincide wi th 

troughs. The angles at which max ima and nodes 

occur can be calculated easily. The trigonometric 

sine of the angles for max ima , for example, is 

equal to nX/d, where n is the order of the maxi-

mum (the central max imum, extending as a per-

pendicular to the line joining the source, is the 

"zeroth" order, and the curving max ima extending 

radial ly on each side are numbered "first", "sec-

ond", " th i rd" and so on consecutively), X is the 

wavelength and d is the distance between sources. 

S imi lar ly , m in ima lie along 'angular paths given 

by the equation sin 0 = (m — 1/2) X/d, where tn is 

the order of the m in ima and the other terms 

are as previously defined. 

Barriers need not be solid to reflect waves. 

A two-dimensional latt ice of un i formly spaced 

pegs arranged as in Fig. 105 w i l l reflect waves in 
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F ig . 104. Ref lec t ion f r om a p a r abo l i c barr ier : 
t o p : ( / ) p a r a b o l i c ref lec tor , (2) ref lec ted w a v e f r o n t s , 
( j ) n o r m a l t o p a r a b o l i c ref lec tor , 1,4) i n c i d e n t w a v e 
f r o n t s ; b o t t o m : ( / ) c e n t r a l m a x i m u m , (2) m a x i m u m , 
(3) n o d e 
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the ripple tank that bear a required geometrical 
relation to the lattice. When a train of plane 
waves impinges obliquely against the lattice, 

1 1 1 
r y 

— 
| 7 - i — 

circular waves are scattered by each peg and 
interfere to produce a coherent train of plane 
waves. The maximum amplitude of this train 
makes an angle with respect to the rows making 

Fig. 106 

up the lattice such that sin 0 max = nk!2d, 
where sin 0 max designates the direction of 
maximum wave amplitude, n the order, X the 
wavelength and d the spacing between adjacent 
rows of pegs (the lattice spacing) (Fig. 106). 
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This equation, known as Bragg'? law in honor of 

its Bri t ish discoverers, the father-and-son team 

of Sir W i l l i a m Bragg and Sir Lawrence Braersr, 

has been widely applied in comput ing the latt ice 

structure of crystal solids from photographs of 

wave maxima made by the reflection of X-ray 

waves from crystals. 

Another of the many aspects of wave behavior 

that can be investigated wi th the r ipple tank is 

the Doppler effect, first studied intensively by 

the Austr ian physicist Christian Jahann Doppler. 

He recognized the s imi lar i ty in wave behavior 

that explains the apparent increase in pitch of 

an onrushing train whistle and the slight shift 

toward the blue end of the spectrum in the color 

of a star speeding toward the earth. Bo th effects 

are observed because i t is possible for moving 

wave sources to overtake and in some cases to 

outrun their own wave disturbances. To demons-

trate the Doppler effect in the r ipple tank, substit-

ute for the agitator bar a small tube that directs 

evenly t imed puffs of air from a solenoid-actuated 

bellows against the surface of the water whi le 

simultaneously moving across the tank at a 

controlled and uniform speed. (A few lengths of 

track from a toy train can be mounted along the 

edge of the tank and a puffer can be improvised 

on a toy car.) 

W h e n the puffer moves across the tank at a 

speed slower than that of the waves, crests in 

front of the puffer crowd closely together, whereas 

those behind spread apart, as shown in Fig. 106 

(top). 

The Doppler effect is observed in waves of a l l 

k inds, inc luding radio signals. By means of 
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relatively s imple apparatus the effect can be 

applied to determine the direction and velocity 

of an artificial satellite from its radio signals. 

These experiments merely suggest the many wave 

phenomena that can be demonstrated by the r ipple 

tank. 

Anyone who bui lds and operates a r ipple tank 

wil l find it appropriate for enough fascinating 

experiments to occupy many rainy afternoons. 

An Artificial Representation 

of a Total Solar Eclipse * 

by R. W. Wood 

I n preparing for polarisation experiments on 

the solar corona, it is extremely desirable to 

have an artificial corona as nearly as possible 

resembling the reality. The apparatus described 

below is aimed at this end. The artificial corona 

in this case resembles the real so closely, as to 

startle one who has actual ly witnessed a total 

solar eclipse. The polarisation is rad ia l , and is 

produced in the same way as in the sun's surround-

ings, and the misty gradations of bri l l iance are 

present as well . So perfect was the representation 

that I added several features of purely aesthetic 

nature to heighten the effect, and finally succeeded 

in getting a reproduction of a' solar eclipse which 

could hardly be distinguished from the real i ty, 

except that the polar streamers are straight, in-

stead of being curved, as al l the recent photo-

graphs show them. The curious greenish-blue 

* Nature, January 10, 1901, pp. 250-251. 
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colour of the sky, and the peculiar pearly lustre 

and misty appearance are fa i thfu l ly reproduced. 

For lecture purposes an artificial eclipse of this 

sort would be admirably adapted, and I know of 

no other way in which an audience could be given 

so v iv id idea of the beauty of the phenomenon. 

Drawings and photographs are whol ly inadequate 

in giv ing any notion of the actual appearance of 

the sun's surroundings, and I feel sure that any 

one w i l l feel amply repaid for the smal l amount 

of trouble necessary in fitting up the arrangement 

which I shall describe. 

A rectangular glass tank about a 30 X 30 cm 

square on the front and 12 or 15 centimeters wide, 

and a six candle-power incandescent lamp are all 

that is necessary. The dimensions of the tank are 

not of much importance, a smal l aquar ium being 

admirab ly adapted to the purpose. The tank 

should be nearly filled w i th clean water, and a 

spoonful or two of an alcoholic solution of mastic 

added. The mastic is at once thrown down as an 

exceedingly fine precipitate, g iv ing the water a 

m i l ky appearance. 

The wires leading to the lamp should be passed 

through a short glass tube, and the l amp fastened 

to the end of the tube w i th sealing wax, tak ing 

care to make a t ight jo int to prevent the water 

from entering the tube (Fig. 107). Five or six 

strips of t infoi l are now fastened with shellac 

along the sides of the l amp , leaving a space of 

from 0.5 to 1 m m between them. The strips 

should be of about the same wid th as the clear 

spaces. They are to be mounted in two groups 

on opposite sides of the l amp , and the rays pas-

sing between them produce the polar streamers. 
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The proper number, w id th and distr ibut ion of the 

strips necessary to produce the most realistic 

effect can be easily determined by experiment. 

A circular disc of metal a trifle larger than the 

lamp, should be fastened to the t ip of the lamp 

with sealing-wax, or any soft, water-resisting 

cement; this cuts off the direct l ight of the lamp 

and represents the dark disc of the moon. The 

whole is to be immersed in the tank wi th the 

lamp in a horizontal position and the metal disc 

close against the front glass plate (Fig. 108). I t is 

a good p lan to have a rheostat in circuit wi th 

the l amp to regulate the intensity of the i l lumi-

nat ion. On turn ing on the current and seating 

ourselves in front of the tank, we shall see a 

most beaut i ful corona, caused by the scattering 

of the l ight of the lamp by the smal l particles of 

mastic suspended in the water. I f we look at it 

through a Nicol prism we shall find that it is 

radial ly polarized, a dark area appearing on each 

side of the l amp , which turns as we turn the 

Fig. 107 Fig. 108 
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Nicol . The i l l umina t ion is not uniform around 

the l amp , owing to unsymmetrical distr ibut ion 

of the candle-power, and this heightens the effect. 

I f the polar streamers are found to be too sharply 

defined or too wide, the defect can be easily 

remedied by altering the t infoi l strips. 

The eclipse is not yet perfect, however, the 

Fig. 109 

i l l umina t ion of the sky background being too 

whi te and too br i l l iant in comparison. B y adding 

a solut ion of some bluish-green ani l ine dye (I used 

malachite-green), the sky can be given its weird 

colour and the corona brought out much more 

dist inct ly . If the proper amount of the dye be 

added, the sky can be strongly coloured wi thout 

apparent ly changing the colour of the corona in 

the slightest degree, a rather surprising circum-

stance since both are produced by the same means. 

W e should have now a most beautiful and 

perfect reproduction of the wonderful atmosphere 

around the sun, a corona of pure golden whi te 

l ight , wi th pearly lustre and exquisite texture, 
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the misty streamers stretching out un t i l lost on 

the bluish-green background of the sky. The rifts 

or darker areas due to the unequal i l l umina t ion 

are present as well as the polar streamers. The 

effect is heightened if the eyes are part ia l ly 

closed. 

A photograph of one of this artificial eclipses 

is reproduced in Fig. 109. Much of the fine detail 

present in the negative is lost in the pr int . 

Believe It or Not 

by G. Kosourov 

Vision is our ma in source of informat ion about 

the environment, and we are used to trusting 

our eyes. The expression ' I can't believe my 

eyes', for example, indicates extreme surprise, 

and normal ly , our reliance on our eyes is justified. 

The eyes, wi th the appropriate parts of the brain, 

are a sophisticated analyt ical apparatus which 

serves our purposes under diverse conditions— 

in a bright sunl ight , or darkness, with slow or 

rapid movements. The image that reaches the 

retina appears free of defects. The image seems 

quite sharp, and the perspective is correct. 

Straight lines seem straight. Objects lack irides-

cence, i .e. , chromatic aberration. 

Our eyes are not ideal instruments, however. 

Objective studies show that the eye possesses all 

the drawbacks of a lens. Our brain, however, 

constructs a correct image from the incorrect 

picture of the environment on the retina of the 

eye. For example, a man , who develops short-

sightedness gets a very distorted perspective 
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when he puts on glasses for the first t ime in his 

life. Straight lines seem curved; planes are 

irregular and sloping. Sometimes this causes 

slight giddiness. Bu t as t ime passes, the man 

begins to perceive perspective and straight lines 

correctly. The world again appears undistorted, 

even though its picture on the retina remains 

askew. 

Under unusual condit ions—when the eyes get 

conflicting information, when contrasts are great, 

when correct perception of distances, dimensions, 

and ratios is difficult, or when certain parts of 

the retina are tired from constant s t imula t ion— 

our brain falters, and various optical i l lusions 

can occur. W e shall give you some i l lustrations 

of how our eyes can be mistaken. W e do not 

want to undermine your trust in your eyes but 

to show you the importance of the synthesis 

performed by the brain i n forming images. 

For the first experiment, which is usual ly used 

as proof that the image on the retina, l ike that 

on a camera, is upside down, we need two pieces 

of cardboard. Two postcards, for example, w i l l 

do. Make an opening about 0.5 m m in diameter 

in one of the cards w i th a large needle, and hold 

i t about 2-3 cm from your eye. Look through the 

hole at a bright landscape, sky, or lamp. Now 

gradual ly shade the pup i l by slowly moving the 

edge of the second postcard upwards. The shadow 

of the edge of the postcard w i l l appear to move 

downwards from above into the field of vision. 

Let us discuss the optical out lay of the experi-

ment in more detail . As long as the postcard w i th 

the opening is not held in front of the eye, a l l 

points in the field of vision send their rays over 

10-01544 
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the entire surface of the pupi l in to the eye 

(Fig. 110a). And the l ight from every po int of 

the pup i l is distributed over the entire surface 

of the retina. W h e n we place the first postcard 

in front of the eye, every point i n the held of 

vision is represented by rays passing through 

a smal l port ion of the pup i l (Fig. 1106). The 

upper points are transmitted by rays passing 

Fig. 110 

through the lower part of the pup i l , whereas lower 

points are transmitted by rays passing through 

the upper port ion of the pup i l . B y shadowing 

the lower port ion of the pup i l w i t h the edge of 

the postcard, we block the upper field of vision, 

and we see the edge of the card descending from 

above. This unusual experiment is obviously not 

dependent on the path rays take to the eye and, 

therefore, cannot be used as, proof that the image 

in the retina is upturned. The field of vision is 

formed before the l ight rays enter the pup i l . This 

can easily be proved if the image is projected 

onto a mat glass plate instead of the human eye. 

Our second experiment wi l l show how the eyes 

handle conflicting informat ion. Place a paper 

tube about 2 cm in diameter over one eye, and 
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look through it at objects in front of you. Now 

hold the palm of your hand in front of your 

other eye about 10-15 cm away from your face 

and close to the tube. You w i l l clearly see a hole 

in the pa lm, through which objects can be seen. 

The image of the centre of the pa lm is completely 

suppressed by the images seen through the tube. 

A more refined experiment can be performed 

with the different informat ion the right and left 

eyes receive. Tie a smal l white object to a white 

thread. Now start this pendu lum swinging in 

one plane, and then step back 2-3 m . Hold a 

l ight filter of any density and colour in front of 

one eye, and watch the pendu lum. You w i l l see 

that i t is not swinging in one plane but mak ing 

an ellipse. I f you move the l ight filter in front 

of the other eye, the mot ion of the pendulum w i l l 

reverse. 

The optical i l lusion i n Fig . 111a is well known: 

the straight l ine seems to break when i t intersects 

the black strip. Not many people know, however, 

that if the figure is completed by drawing a 

winch and a load (Fig. 1116), prompt ing the 

brain to believe that the l ine is a taut winch l ine, 

the i l lusion of a broken l ine disappears. 

Our last experiment shows how an image is 

formed when the brain is given a choice of alter-

natives. Figure 112 shows two pictures of the 

lunar landscape in the area of the Mare Humorum 

and Apennine Ridge. I n one of the pictures you 

see circular lunar mounta ins and in the other 

circular lunar craters, i .e. , an inverse landscape. 

Turn the pictures, and the landscape wi l l reverse. 

These pictures are absolutely identical , but one 

of them is upside down. The effect of inverse 

1 0 * 
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relief is often observed when the Moon is viewed 

through a telescope. The astronauts who visited 

the Moon had difficulty correctly perceiving the 

landscape which lacked atmospheric perspective 

in the h igh ly contrastive surroundings. The 

effects of reverse mot ion can be observed by 

X XI 
(a) (6) Fig. Ill 

watching the silhouette of a dish-shaped radar 

aerial as i t rotates. You wi l l notice that the 

aerial b lun t ly reverses the direction of its rota-

tion at certain moments. Students used to be 

advised to study this phenomenon by observing 

the silhouette of a w indmi l l . 

Many interesting il lusions are related to colour 

perception. Opt ica l i l lusions are not s imply 

amusing tricks, since studies of the organs of 

sight under unusual conditions can help explain 

the complex processes in the; eye and brain during 

the synthesis of images of the environment. Readers 

who wish to learn more about physiologi-

cal optics are referred to Experiments in Visual 

Science by J . Gregg.* The book contains a 

* Gregg James R . Experiments in Visual Science. For 
Home and School. New York. Rona ld , 1966, 158 p. 



Believe It or Not 149 



150 B. Kogan 

number of simple experiments w i th visual per-

ception. A l l of them are quite manageable by 

school children, and many are part icular ly 

instructive. Unfortunately, the language used to 

describe physical optics is far from scientific. 

Colour Shadows 

by B. Kogan 

A Green Shadow 

I n a room l i t by normal white l ight , turn on 

a desk l amp wi th a red bu lb . Place a sheet of 

white paper on the desk and then hold a smal l 

object, a pencil, for example, between the l amp 

and the desk. The paper wi l l cast a shadow, which 

w i l l not be black or grey but green. This effect 

seems to relate more to physiology and psychology 

than to physics. The shadow of the object appears 

green because it contrasts w i th the background, 

which, although actually reddish, we perceive 

as white since we know the paper is white. The 

absence of the colour red in the area covered by 

the shadow is apparently interpreted by our 

brain as the colour green. Bu t why green? 

Red and green are complementary colours, i .e. , 

when combined, they produce white. W h a t does 

this mean? As early as the seventeenth century, 

Newton found that white sunl ight is complex 

and combines the primary colours violet, blue, 

green-blue, green, yellow, orange, and red.. This 

can be il lustrated with a glass prism. If a narrow 

beam of sunlight is passed through the prism, 

a coloured image of the beam wi l l appear. Newtop 
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also used a lens to combine al l these colours and 

obtain the colour white again. I t was found that 

when one of the colours, green, for example, is 

' intercepted', the beam becomes coloured, in 

this case, red. W h e n yellow is intercepted, the 

beam becomes blue, and so on. Thus, green and 

red, yellow and blue, and similar pairs of colours 

are complementary. 

This interesting experiment can also be carried 

out wi th l ight bulbs of other colours. I f the l ight 

bu lb is green, for example, the shadow wi l l be red. 

I f the bulb is blue, the shadow wi l l be yel low, 

and if the bulb is yellow, the shadow wi l l be 

blue. Generally, the colour of the shadow wi l l 

always be complementary to the colour of the 

bu lb . The above phenomenon can easily be 

observed in winter t ime near neon advertisements 

in the city. Shadows from the neon, which are 

complementary to the colours of the advertise-

ment itself, should show up clearly when the 

ground is covered with snow. 

Red Leaves 

Turn oft the l ight in your room, and switch on 

a lamp with a blue bu lb . Look at the leaves of 

plants in the room: the green leaves look red, 

rather than green or blue, in the blue l ight . W h a t 

causes this? Actual ly , the glass of the blue l ight 

bu lb passes a certain amount of red l ight along 

wi th the blue. At the same t ime, p lant leaves 

reflect not only green but red l ight to some extent 

as well , while absorbing other colours. Therefore, 

when the leaves are i l luminated with blue l ight , 

they reflect only red and, therefore, appear as 
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such in our eyes. This same effect can be obtained 

in a different way by looking at the leaves through 

blue spectacles or a blue l ight filter. The famous 

Soviet scientist K . Timiryazev was speaking 

about such eye-glasses when he wrote: "You have 

only to put them on, and the whole world looks 

rosy for you. Under a clear blue sky a fantastic 

landscape of coral-red meadows and forests rolls 

out .. ." 

What Colour is Brilliant Green? 

by E. Pal'chikov 

W h a t colour is the 'br i l l iant green' often used 

as an antiseptic for minor bruises and wounds? 

Many would probably answer that i t is green 

(and they would be right). Bu t look through a 

bottle of the br i l l iant green at a bright light 

source, the sun, the filament in an electric bulb , 

or an arc discharge, for example. You wi l l see 

that the br i l l iant green transmits only the colour 

red. So, is the 'green' tincture red? 

Pour a br i l l iant green solution* into several 

developing trays of various depth or thin-wall 

glass beaker, and examine it in the l ight . Thin 

layers of the solution are, indeed, green, but 

thicker layers have a grayish t in t (with purple 

hues), whereas the thickest layers appear reddish. 

I n other words, the colour depends on the thick-

ness of the layer of solution. How this can be 

explained? Two transparency bands—a broad 

* The tincture is not diluted, the vessels must he 
extremely shallow. 
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blue-green band and a narrow red band (Fig. 113) — 

are visible in the transmission band of a t h i n 

layer of br i l l iant green. I n reality, however, the 

red band is not narrow: it extends into the in-

frared range, although the human eye can detect 

only a smal l fraction of the band. The absorption 

Ul t r av i o l e t 

l ight 

-- O ^ 

V i s i b l e l iu l i t Fig. 113 

in the red band is lower than that in the blue-

green band (the transmission factor for the red 

band is substant ia l ly greater than that for the 

blue-green). Bu t the blue-green band is wider 

than the red, and it is situated i n the part of the 

spectrum where the eye is most sensitive. There-

fore, a solution of br i l l i ant green in a th in layer 

wi l l appear green. 

Now let us double the thickness of the layer 

or place two layers over one another, which 
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wi l l have the same effect. Obviously, the trans-

mission factor wi l l decrease. To get the value of 

this new transmission, we mu l t i p l y the factors 

of the first and second layers. I n other words, the 

transmission factor for the total layer should be 

squared. I n this case, the transmission factor for 

the blue-green band wi l l decrease very signifi-

cant ly , whereas it w i l l remain almost the same 

for the red band. 

Figure 114 shows changes in the transmission 

factors for the blue-green and red bands with 

increases in the thickness of the br i l l i ant green. 

The proportion of blue-green to red obviously 

decreases. At a certain thickness, the solution 

wi l l transmit only red l ight . Now answer the 

question again. W h a t is the real colour of br i l l iant 

green? 

An Orange Sky 

by G. Kosourov 

A number of interesting experiments concern 

colour perception. Those we suggest here involve 
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various optical i l lusions caused by unusual v isual 

conditions or eye fatigue. 

Colour perception is a very complex mechanism, 

which has not yet been studied adequately. The 

retina of the eye contains two types of colour-

sensitive cells called rods and cones. The rods 

contain photochemically sensitive pigment, i .e. , 

purpura or rhodopsin. W h e n acted upon by l ight , 

rhodopsin decolourizes and reacts wi th the nerve 

fibres, which transmit signals to the bra in . I n 

very bright l ight , the pigment decolourizes com-

pletely, and the rods are bl inded. The process is 

reversed in the dark, i .e. , purpura is recovered. 

Rod or twi l ight vision is very sensitive but 

achromatic, since the rods cannot distinguish 

colours. I n fairly bright l ight , cone vision, which 

is sensitive to colour, takes over. Many convincing 

experiments indicate that the cones contain three 

kinds of photochemically sensitive pigments 

which are max ima l ly sensitive in the red, green, 

and blue bands of the spectrum. The variable 

degree of their decolourization produces the 

sensation of colour in the brain and allows us to 

see the world in different colours, t ints, halftones, 

and hues. This principle of tr ichromatic vision 

is used in mot ion pictures, colour television, 

photography, and pr int ing. Methods for meas-

uring colours quant i ta t ive ly are also hased on 

the trichromatic principle. 

Colour perception can be generated not only 

by colour itself but by intermittent i l l umina t ion , 

for example. To test this, draw the black-and-

white circles shown in Fig. 115a-d with I nd i a 

ink. Your circles should be approximately 8-

12 cm in diameter. Cut out the discs, and spin 
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them slowly, e.g., 1-3 revolutions per second, 

on the axis of a film projector, record player, 

tape recorder, or a chi ld 's top. Instead of black 

arcs you wi l l see coloured circles. The colour 

(«) (b) 

(c) id) 

Fig. 115 

depends on the velocity of the revolutions, the 

i l l umina t ion , and the design on the circle itself. 

On the disc in Fig. 115a, for example, the arcs 

that follow the black sectors (in the direction of 

rotation) appear red when poorly l ighted, and 

yellow under dazzl ing l ight . At a certain speed 

and brightness, the black sectors appear blue. 
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This phenomenon is st i l l incompletely under-

stood. 

Colours are distinguished not only by shade or 

variety but also by saturat ion. I f we slowly add 

white paint to red, the red w i l l gradual ly become 

pinker. I n paint ings and, part icular ly, in printed 

copies of paint ings, i t is very difficult to obta in 

well saturated tones and a broad spectrum of 

brightness. The brightness ratio of the brightest 

white pa int to the deepest black barely reaches 

one hundred, whereas in nature the ratios reach 

many thousands. Reproductions of paint ings, 

therefore, often appear either washed out or too 

dark, and one of the most important elements of 

steric perception—atmospheric perspective—is, 

thus, lost. The image of a landscape or a genre 

scene in such paint ings seem two-dimensional. 

The range of brightness in projections of slides 

onto a screen is much broader. That is why photo-

graphs on colour reversible film are so expressive 

and have such wonderful perspective. 

The perception of a pa in t ing can be improved 

considerably by i l l um ina t i ng i t i n a special way . 

Make a negative from a colour picture out of 

a magazine and then use a contact pr int ing proc-

ess to make a black-and-white slide of the 

negative. Now project the slide onto the original 

using a projector w i th a powerful l ight source. 

Make sure that the projected slide lines up exactly 

w i th the original. The result w i l l make you 

glad you made the effort. The picture wi l l seem 

livelier; i t w i l l seem to gain dimension and a 

special charm. Now turn off the projector, and 

you wi l l see how du l l and inexpressive the original 

is wi th uniform l ight ing. 
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The fol lowing experiments deal wi th so-called 

successive colour images. Complete recovery of 

colour-sensitive pigment is a rather slow process. 

I f you look at a monochromatic picture for a 

long time and then shift your eyes to a piece 

of whi te paper or a white wal l or ceil ing, the 

white w i l l appear to lack the colour that has 

tired the eyes. The same picture w i l l appear on 

the whi te surface but i t w i l l be in the complemen-

tary colour. Cut out red, orange, yellow, green, 

blue, and violet paper squares 2 by 2 cm in size. 

Put one of these coloured squares on a piece of 

white paper i n front of you and look at i t , wi thout 

straining your eyes, for about 30 seconds. Stare 

fixedly at one point , and do not let the image 

shift on the retina. Now shift your gaze to a field 

of white, and after a second you w i l l see a clear 

afterimage of the square in a complementary 

colour. This shows that the complementary to 

red is green, to blue—orange, and to yellow— 

violet. Each pair of complementaries, if mixed, 

should produce achromatic white or grey. 

To m ix complementaries place two 'complemen-

tary' squares (red and green, for example) close 

together, and put a glass plate between them 

upright (Fig. 116). Now position your eye so that 

one of the squares is visible through the glass and 

the other reflected in i t . By varying the angle of 

the plate and thus changing the ratio of the 

l ight fluxes from the squares, you can almost 

completely decolourize the superimposed images. 

To achieve complete achromatizat ion of the 

image, the colours must match perfectly. A du l l 

brown colour is most often obtained. Bu t if the 

colours are absolutely uncomplementary, green 
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and yellow or red and violet, for example, the 

result ing colour w i l l always be bright. The 

images appear even brighter if the squares are 

placed against a complementary, rather than 

white background. 

The most str iking and inexplicable colour 

i l lusion is i l lustrated by our last experiment. 

W e know that colour reproduction is based on 

the principle of tr ichromatism. I f we photograph 

the same scene three t imes using three different 

l ight filters—red, green, and b lue—and then 

project the pictures from three different projec-

tors onto the same screen, the resulting picture 

w i l l have realistic colours. The l ight filters 

should produce the colour white when combined. 

Try this experiment w i th only two complementary 

l ight filters, red and green, for example. The 

transmission of colour should be good in this 

case too, although not as perfect as in the three-

colour projection. Experiments show that even 

one filter is enough for projection. 

Photograph the same scene twice on panchro -

mat ic film without mov ing the camera. Use a red 

Fig. 116 
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l ight filter for the first picture and a green'filter 

for the second. The filters from a school k i t w i l l 

suit this purpose since they need not be care-

ful ly matched. Use a contact pr in t ing technique 

to make positives, and then project the two slides 

Red li.'iit fi!tc-1-

Fig. 117 

from two projectors onto a • single screen. Line 

the images up exactly. Now place a red filter i n 

front of the projector wi th the slide taken wi th 

a "red filter. Leave the picture i n the second pro-

jector black and white (Fig. 117). The result 

w i l l be a colour picture fu l l of tones and hues 

even though you are projecting only red and black 

and whi te pictures in which the distr ibut ion of 
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l ight and shade differs. Objective investigations 

of the l ight reflected from the various places on 

the screen show only the colour red, a l though 

wi th different degrees of clarity and saturation. 

Colour perception in this particular case is entire-

ly subjective. The projectors should be powered 

by separate autotransformers so that the i l lumi-

nat ion from each can be controlled independently. 

Normal ly , the colour seems natural when the 

screen is d im ly l i t . 

Thus, phenomena that seem simple and obvious 

are actual ly fu l l of secrets and mystery. 

The Green Red Lamp 

by V. Mayer 

I n his excellent book Ihe Universe 

of Light, W . Bragg describes an elegant 

experiment to demonstrate a peculiar 

property of the human eye. The experiment is 

simple enough to be reproduced at home wi thout 

much difficulty. The necessary equipment can be 

assembled from a toy constructor k i t (Fig. 118). 

At tach a micromotor (2) by an a lumin ium or 

t inp late mount to an a l um in ium baseplate (1) 

15 X 60 X 110 m m in size. Insert a shaft (4) 
with a pulley (5) whose inner diameter is 15-

25 m m into the openings of two risers (3) about 

60 m m in height. 

Attach a cardboard disc (6) 100-140 m m 

in diameter to one end of the shaft before instal-

l ing (if the shaft is threaded, the disc can be 

* The Universe of Light. By Sir Will iam Bragg, 
London, Dover, 1950. 

SI—01544 
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fastened with nuts). Fix another riser (7) to the 

same base plate wi th an opening for a smal l l ight 

bu lb (#). Connect the shaft of the micromotor and 

the pulley wi th a rubber ring (9). The motor 

should be connected to one or two flashlight 

batteries connected in series. According to Bragg, 

the disc should rotate at a speed of 2 or 3 revo-

lutions per second. The speed can be controlled 

to a certain extent by slowing the pul ley wi th 

one finger. 

Test the setup before beginning the experi-

ment. Then cut a sector in the cardboard disc 

whose arc is about 45°. Glue white paper to one 

half of the remaining sector and black paper to 

the other half (Fig. 119). Pa int the bu lb of the 

flashlight, which should be rated for 3.5 V , wi th 

red nitrocellulose enamel (fingernail polish w i l l 

do). When the enamel has dried, insert the l ight 

bu lb into the opening in the riser, and supply 

it wi th wires to the batteries. Place a desk l amp 

20-50 cm in front of the disc to i l l uminate i t 

squarely. Now connect the bulb to the batteries, 

and switch on the motor. 

I f the disc rotates so that on each revolut ion 

the bulb is first shaded by the black sector, the 

bu lb w i l l appear red regardless of the strength 

of i l l uminat ion or rotat ion speed. I f we change 

directions by changing the polarity of the bat-

teries so that the bu lb is shaded first by the white 

sector, the bulb w i l l appear green or blue-green! 

I f the conditions of the experiment (the speed of 

rotat ion or the colour of the enamel) have not 

been carefully fulfi l led, the lamp wi l l appear 

l ight blue wi th a whit ish tinge rather than 

blue-green. 

11* 
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Now let us try to explain the results of the 

experiment. The disk spins rap id ly , and each 

t ime the red bu lb is revealed through the cut-out 

sector, a brief red image reaches the retina of the 

eye. I f the white sector shades the bu lb as the 

rotation continues, the retina receives a reflection 

of the scattered white l ight from the desk lamp. 

This white l ight acts on the retina for a longer 

t ime than the red. After the black sector passess 

before the eye, the process starts again, and the 

lamp appears blue-green since the eye perceives 

the colour complementary to the red bu lb . 

The retina apparently becomes more sensitive 

to the other spectral components of white after 

brief i l l um ina t ion wi th red l ight . W h e n the 

eye, which 'tires' of the colour red, is i l luminated 

by white l ight , i t perceives the whi te without 

a 'red component ' . The retina has become more 

sensitive to the colour complementary to red— 

blue-green. Since the retina is exposed to the 

white l ight much longer than to the red, the 

l ight bu lb appears blue-green rather than red. 

This hypothesis is supported by the result of 

rotation i n the opposite direction so when the 

bulb is shaded first by the black sector. Dur ing 

exposure to the colour black the part of the 

retina on which the red image of the bu lb appears 

is able to recover. Therefore, when the white 

half of the disc appears, the eye perceives al l the 

colours that compose white equal ly. Since the 

red l ight acts on the retina for a longer t ime 

than a l l other components (first the red compo-

nent of the white colour appears and then the 

red colour of the bu lb itself), the bulb looks 

red. 
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Measuring Light Wavelength 
with a Wire 

by N. Rostovtsev 

Stretch a t h i n wire {W) 0.05-0.12 m m in dia-

metre vertically about 2-3 m m in front of an 

imaginary eye (E). Now direct a beam of l ight 

from a point source towards the eye (Fig. 120). 

To the right and left of the point source, we wi l l 

see a bright th in band. The band, which appears 

as a result of the diSract ion of l ight is called a 

diffraction fringe. W e w i l l use an ordinary l ight 

bu lb or a bu lb from a flashlight as a l ight source 

i n our observations. Place the l ight behind a 

smal l opening (0) in a screen (.A) 1-1.5 m away 

from the observation point . The wire (W) can be 

replaced with a t h i n filament or hair . 

I f we examine the centre of the diffraction 

fringe carefully, we can detect a white band w i t h 

reddish edges. This band is called the central 

max imum . I t is bounded on either side by darker 

bands, which are called first m in ima . Colour 

bands follow next, which, as we move from the 

centre to the edges, change gradual ly from green-
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ish-blue to red. Darker bands, called second 

m in ima , reappear at the edge of the red. This 

pattern then repeats, although the m i n ima become 

paler, and the l ight bands finally merge into a 

continuous band. Observations w i th wires of 

different diametres show that the smaller the 

wire diametre, the greater the distance between 

adjacent m in ima . 

To perform interesting experiment place the 

wire used for diffraction observations between 

the jaws of a vernier caliper. Tighten the caliper 

sl ightly, and then carefully remove the wire. The 

width of the slit between the jaws w i l l equal the 

diametre of the wire exactly. Now look through 

this slit from the same distance from which you 

made your diffraction observations, and align 

the slit wi th the l ight source 0 . On either side 

of the source, you should see a diffraction fringe 

whose m i n ima and max ima are exactly the same 

distance apart as those in the diffraction of the 

wire. This observation is an excellent i l lustrat ion 

of the Babinet principle, according to which 

diffraction patterns from a screen and an opening 

of the same wid th are identical outside the area 

of a direct ray. 

Now coil the piece of wire we have been using 

for our observations of the diffraction fringe into 

a disc whose diametre is abou,t hal f the diametre 

of a d ime. For this we wi l l need a wire 2-3 m long. 

Ho ld this disc in front of one eye, and look at 

a point source. Y o u should see a number of 

haloes: a central whi te circle w i th reddish fringe, 

surrounded by coloured circles. The haloes are 

separated from one another by narrow dark 

circles, i.e. the m in ima . Each such m i n i m u m 



Measuring Light Wavelength with a Wire 167 

follows the red fringe of the preceding halo. I f 

the observation is made from the same distance 

as in the experiment w i th the diffraction of the 

wire, the diametres of the dark circles w i l l equal 

the distances between the respective m i n ima of 

the diffraction fringe. The finer the diametre of 

the wire, the more visible the haloes w i l l be. 

W h y do such haloes appear if a coil of wire is 

placed in the path of rays from a point source? 

Each small section of the wire in front of the 

eye produces its own diffraction fringe, which is 

symmetrical wi th respect to the l ight source. 

Since every section in the coil is oriented differ-

ently, the resulting diffraction fringes are t i l ted 

differently around a single point , which coincides 

wi th the l ight source. Since the thickness of the 

wire is uniform, m i n ima of the same order are 

located the same distance from the l ight scurce 

in al l diffraction fringes and merge to produce 

dark circles. The coloured sections between the 

m in ima also merge to produce coloured circles. 

Now let us determine the conditions in which 

m i n ima appear in the diffraction pattern pro-

duced by a wire w i th d diametre and a sl it of 

the same wid th . Since the distance between the 

m in ima is the same in both cases, either the wire 

or the slit can be analysed. To s impl i fy the 

calculation, we shall select the sl it . Let us exam-

ine the waves that do not change direction after 

passing through the sl it (in Fig. 121 they are 

represented by dotted lines). The eye converges 

them on the retina at point 0 . Waves from al l 

points of the slit enhance each other at this spot 

because they reach the eye regardless of the 

distance travelled, and at point O they are in 
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the same phase. Therefore, the central max imum 

is formed i n the neighbourhood of the point 0 . 

The eye converges waves diffracted at angle <p 

to the i n i t i a l direction at po int K, where the 

waves interfere as a result of superposition. The 

result of the interference w i l l depend on the 

difference i n the distance travelled by the rays 

emanat ing from the extreme points A and B of 

the sl i t . Draw a section BC perpendicular to the 

ray emanat ing from point A. The new intercept 

AC equals the difference between the distances 

travelled by the two extreme rays. I t follows 

from Fig. 121 tha t AC — d sin <p, where d is 

the sl i t w id th . 

Calculat ions show that in the diffraction pat-

tern produced by a rectangular s l i t , m i n ima are 

observed when the difference i n the distance 

travelled by the waves emanat ing from the ex-

treme points of the slit is 

d s in cp = kX (1) 

where ^ is the l ight wavelength and k is the 

number (order) of a m i n imum (k = 1, 2, 3, . . .). 

Now we shall test the va l id i ty of formula (1) 

for the first m i n i m u m , i.e. k — 1. Let the second-
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ary waves that emanate from al l points of the 

slit travel at an angle <p so that 

d sin cp = % (2) 

D iv ide the slit in to two imaginary rectangular 

strips (zones) AD and DB, both of w id th d!2. 

According to definit ion (2) the difference in the 

distance travelled by rays from points A and D 

is X/2. The difference between rays from any two 

points dl2 apart on the slit w i l l be the same. 

The waves that travel X/2 suppress one another 

by superposition and, therefore, if condit ion (2) 

is observed, the waves from zone AD w i l l suppress 

the waves from DB. As a result the first m i n i m u m 

wi l l appear at point K. 

Simi lar ly , we can show that the next (second) 

m i n i m u m wi l l appear if d sin <p = 2X. I n this 

case, the slit should be div ided equal ly in to four 

zones. The difference i n travel for the waves both 

from the first and second, and from the th i rd 

and fourth zones w i l l be %l2. Therefore, the wave 

from the first zone w i l l suppress that of the 

second, and the wave of the third zone w i l l sup-

press that of the fourth. The second m i n i m u m 

appears on the retina where these waves are 

superimposed. 

According to formula (1), the l ight wavelength 

can be determined from the formula 

K = d s i n J t ( 3 ) 

K 

Measurements of X can be simplified considerably 

by using a pr imi t ive metre called an eriometre. 

Y o u can make an eriometre from a square piece 

of cardboard whose sides are 10-15 cm long. 
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Draw a circle w i th a radius of 20-30 m m in the 

midd le of the square. Make an opening of 2-3 m m 

in diametre in the centre and 6-8 openings of 

smaller diametre around the circumference. 

Place the eriometre A directly in front of an 

electric bu lb . Now stand 1-2 m away from the 

instrument so that rays pass directly from a 

sector of the incandescent filament through open-

ing 0 to the eye. Ho ld a coil of wire in front of 

one eye, and move it perpendicular to the rays 

un t i l the haloes are clearly visible. Vary the 

distance between the instrument and your eye 

to find a position from which the perforated 

circumference of the eriometre coincides w i t h 

the midd le of dark ring of k order (in Fig. 120, 

k = 2). 
As is obvious from the figure, the tangent of 

the diffraction angle cp for a dark r ing is calculated 

from tan cp = r!l, where r is the radius of the 

circumference of the eriometre and I is the dis-

tance from the instrument to the coil of wire. At 

low diffraction angles, which are common in such 

measurements, the following relationship is true 

sin <p « tan <P = y 

By subst i tut ing the value of sin tp in expression 

(1), we get a formula for wavelength 

< 4 > 

W e already know the radius of the eriometre r. 

The distance I can be easily measured. The order 

of a dark r ing k is determined by obsarving the 

haloes. The wire diametre d is measured with a 
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micrometre. I f the measurements are taken in 

white l ight , we can determine the effective l ight 

wavelength to which the human eye is most 

sensitive wi th formula (4). This wave is approx-

imately 0.56 fim long, and waves of this length 

correspond to the green section of the colour 

spectrum. 

Haloes may appear in diffraction patterns 

caused by round obstacles. They can be observed 

by spreading a smal l amount of lycopodium pow-

der (composed of the spores of a club moss, i t 

can be obtained in any drugstore) on a glass plate. 

Gent ly tap the edge of the plate against your desk 

to remove excess powder. Now, look through the 

plate at a l ight source. Y o u should see haloes 

formed by the round spores, which act as obsta-

cles. Especially bright haloes appear around a 

drop of blood pressed between two glass plates. 

I n this case the diffraction is caused by red blood 

cells called erythrocytes. 

The haloes produced by round and rectangular 

obstacles differ sl ight ly. The m i n imum condit ion 

for haloes from rectangular obstacles is de-

scribed by formula (1). The m i n imum condit ion 

for haloes from round obstacles is 

d sin cp = 1.22*,; 2.23X; . . . (5) 

Here d is the diametre of a round screen. W i t h 

the help of an eriometre and formula (5), we can 

determine the average diametre of ciub moss 

spores and erythrocytes without a microscope! 

Haloes 'can be observed around the Sun, the 

Moon, and even other planets. These haloes 

appear when l ight passes through clusters of 

water drops or ice crystals suspended i n the 
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atmosphere (through a th in cloud, for example). 

Clear haloes appear only if the cloud is made 

of drops of equal diametre or crystals of the same 

thickness. I f the drops or crystals vary in size, 

however, rings of different colours superimpose 

to produce a whit ish corona. This is why a halo 

appears around the Moon, part icular ly at twi l ight 

on a clear day. The water vapour in the atmo-

sphere condenses sl ightly on such nights and 

produces smal l drops or crystals of the same 

size. Haloes sometimes occur when the l ight 

from a distant lamp passes through a fog or a 

window pane covered wi th a th in layer of ice 

crystals or condensed vapour. 

EXERCISES 

1. The effective light wavelength is approximately 
0.56 (j,m. Using an eriometre, determine the diametre of 
the strands in nylon stockings and ribbons. 
2. How does the appearance of the halo indicate whether 
the cloud contains water droplets or ice crystals? 
3. The angular diametre of the Moon is 32 minutes. 
Determine the diametre of the drops in a cloud, if the 
angular radius of the central circle of its halo is four 
times the angular diametre of the Moon. 

Measuring Light 
with a Phonograph Record 

by A. Bondar 

One of the most accurate ways of determining 

the spectral composition of radiat ion is the 

method based on diffraction. A diffraction grating 

is a good spectral instrument. W e can observe 
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diffraction and even measure the wavelength of 

visible l ight with a standard phonograph record. 

I n acoustic recording evenly spaced grooves are 

cut on the surface of a disk. These grooves scatter 

l ight , whereas the intervals between them reflect 

i t . I n this way the disk becomes a reflecting 

diffraction grating. I f the width of reflecting 

strips is a and the w id th of scattering strips is b, 

then the value d = a + b is the period of the 

grating. 

Consider a plane monochromatic wave of length 

X which is incident at angle 8 to a grating wi th 

period d. According to the Huygen-Fresnel prin-

ciple, every point of a reflecting surface becomes 

an ind iv idua l point source sending out l ight in 

al l possible directions. Consider the waves travel-

l ing at an angle cp to the grating (see Fig. 122). 

These waves can be collected at one point w i t h a 

condensing lens (the crystall ine lens of the eye, 

for example). Let us determine under what com-

binat ion of conditions the waves wi l l enhance 

one another. 

The difference between distances travelled by 

rays 1 and 2 issued by points A and B from 

neighbouring reflecting areas (Fig. 123) is 

| AK | = | NB | = d sin cp — d sin 9 = 

= d (sin cp — sin 6) 

(KB is the front of the reflected wave directed at 

angle cp, AN is the front of the incident wave). 

I f the difference is a common mul t ip le of the 

wavelength, the phases of oscillations travel l ing 

from points A and B w i l l be equivalent, and w i l l 

enhance each other. A l l other reflecting areas of 

the grating behave s imi lar ly . Therefore, the 
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condit ion of central max imum is described as 

where k = 0, 1, 2, . . .. Hence we can determine 

the wavelength k. For this we need to know the 

grat ing period d, the incidence angle 0 for the 

wave wi th respect to the grat ing, and the angle 

of its direction to a corresponding max imum (p. 

Norma l ly , the grating period is much larger than 

the wavelength (d is much larger than X), and 

angles cp are, therefore, smal l . This means that 

the central max ima are situated very close to one 

another, and the diffraction pattern is rather 

hazy. The larger the incidence angle (9), however, 

the larger the cp angles and, consequently, the 

more convenient the measurements. Thus, the 

rays should be directed towards the grating at 

an angle. 

So far we have been discussing monochromatic 

l ight . Wha t if complex white l ight strikes such 

a grating? I t is clear from equation (1) that the 

location of every central max imum depends on 

wavelength. The shorter the wavelength, the 

smaller the angle cp corresponding to the maxi-

d (s in cp — s in 6) = kX (1) 

Fig. 122 Fig. 123 
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mum . Thus, all max ima (except for the central) 

stretch out in a spectrum whose violet end is 

directed towards the centre of the diffraction 

pattern and whose red end is directed outward. 

Two spectra of the first order, followed by two 

spectra of the second order, and so on lie on 

either side of the central (zero) max imum. The 

distance between corresponding lines of spectra 

increases wi th an increase in the order of the 

spectrum. As a result, spectra may overlap. I n 

the spectrum of the Sun, for example, second-

arid third-order spectra overlap part ia l ly . 

Now let us turn to the experiment itself. To 

measure the wavelength of a specific colour, we 

need to determine the period of grating (d), the 

sine of the incidence angle of the ray wi th respect 

to the grating (sin 0), and the sine of the angle 

that determines the direction towards a m a x i m u m , 

for example, the max imum of the first order 

(sin cp]). The period of the lattice can easily be 

determined by p lay ing the record: 

Here AR is the absolute displacement of the 

stylus along the radius of the record in At t ime, 

and n is the number of revolutions per un i t of 

t ime . Usual ly , d is approximately 0.01 cm. 

A desk lamp can be used as a l ight source. 

Make a screen wi th a slit out of cardboard, and 

cover the lamp to avoid l ight interference i n 

diffraction pattern analysis. The filament of the 

bu lb should be vis ible through the sl it . Place 

the lamp close to one wal l of the room. Place the 

record horizontal ly near the opposite wal l . Now 
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find the image of the slit (see Fig. 124). Y o u 

should see the diffused colour bands that indicate 

the spectrum of the first order (k =• 1) simultan-

eously. I t is easy to prove that the greater the 

angle 0, the wider the colour image of the slit 

and the more accurate measurements of the angle 

at which the ray in question is diffracted wi l l be. 

To determine sin cpx, have a friend hold a pencil 

(or some other object) over the slit so that its 

image coincides wi th the selected spectrum band 

in the l ight reflected from the grat ing (as from a 

flat mirror) (see Fig. 124). Once we have measured 

a, b, and h with a ruler, we can determine sin (f! 

and sin 8 

These expressions could be somewhat simplified. 

Since b <C a, and h a, then 

Fig. 124 

sin<pt = — . 
1 / a 2 + &3 

a 

a 1 

/ a f + ft" / l + 62/«2 2 a* 
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and 

a ^ 1 ! _ J _ 

]/a2 + A2 ] / l + fc2/a2 ~ 2 a2 

And finally 

/j a ja 
A, = d (sin (pt— sin — 

I t is interesting to compare the estimated 

wavelengths of various colours w i th the values 

in the reference tables. I n our experiments the 

error, wi th very careful measurements, was on 

the order of 10~8 m . This level of accuracy is 

quite acceptable for wavelength in the visible 

band (A, is approximately 10-7 m) . 

A Ball for a Lens 

by G. Kosourov 

Geometrical optics is based on the idea that 

l ight rays move in straight lines. Y o u can prove 

this for yourself experimental ly. Replace the 

objective lens of your camera wi th a sheet of 

black paper w i th a very small opening in i t . 

Br ight ly i l luminated objects can be photographed 

wi th such a device, called a camera obscura. The 

picture in Fig. 125, for example, was taken wi th 

an ordinary camera whose objective lens was 

replaced with a sheet of black paper in which an 

opening 0.22 m m in diametre had been made . 

The ASA 80 film was exposed for 5 seconds. The 

image on the film coincides exactly wi th the cen-

tra l projection of the points of the object by straight 

12-01544 
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lines passing through the opening. The image is 

a hard evidence that l ight rays travel in straight 

lines. 

A shadow on a white screen cast by an opaque 

object is explained as a projection of the contour 

of the object on the plane of the screen by rays 

Fig. 125 

from every point of the l ight source. Since the 

l ight source is usual ly rather large, the dark 

centre of the shadow called the umbra is bounded 

by a diffused semisliadow - or penumbra. W o 

might expect to reduce or even el iminate the 

penumbra by reducing the size of the l ight 

source. Experiments show quite the opposite, 

however. When the light source is fairly small , 

it reveals phenomena that were earlier masked 

by the penumbra. For example, the straight edge 
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of an opaque plate casts the shadow shown in 

Fig. 120. The shadow was photographed at a 

distance of 0.5 m from the screen in Avhite l ight 

through a red lilter, and the picture was then 

enlarged. The distance between the first two dark 

bands is 0.0 mm . The edge of the shadow is di-

ffused, and dark and bright bands of d imin ish ing 

contrast, lie parallel to the edge. I f the l ight 

source is white, the bands are all the colours of 

the spectrum. 

A shadow cast by a th in wire (Fig. 127) also 

has a complex structure. The edges are fringed 

with bands similar to those of the opaque plate, 

but there are dark and bright bands w i th in the 

umbra whose wid th reduces wi th the thickness 

of the wire. (This picture was taken in white 

l ight through a red filter. The wire diameter is 

1.2 mm , and the distance from the wire to the 

camera is 0.5 m.) 

The shadow cast by a bal l or a small opaque 

disk is quite unusual (Fig. 128). I n addit ion to the 

fami l iar dark and bright circles surrounding the 

shadow, a bright spot appears in the centre of 

the umbra as though there were a small opening 

in the centre of the disk. (For this picture we used 

a bal l 2.5 mm in diametre and a red filter. 

R 1 = R 2 = 0.5 m.) 

Diffraction refers to the phenomena that result 

when l ight does not propagate in strict accor-

dance with the principles of geometrical optics. 

These phenomena can be explained by the wave 

nature of l ight . We can get a more exact descrip-

tion of l ight propagation not from the structure of 

the rays but from the patterns of l ight wave 

propagation themselves. 

12* 
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Fig. 120 
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Consider the circular waves that appear when 

a stone disturbs the calm surface of a pond. I f 

the waves reach a log floating on the surface, a 

clearly defined shadow appears in the wake of 

the log. The shadow is bounded by the rays drawn 

from the point at which the stone hits the surface 

of the water through the ends of the log. W i t h i n 

the shadow, diffraction creates less noticeable 

waves, which scarcely disturb the pattern of the 

geometrical shadow. I f the waves run in to a 

pile, the wave pattern for a very short distance 

behind the pi le does not resemble a geometrical 

shadow. F ina l ly , if the waves h i t a t h i n pole 

sticking out of the water, no shadow appears at 

al l since waves move freely around smal l obsta-

cles. I n this case only a weak circular wave caused 

by the pole is visible on the surface. 

Thus, sometimes straight rays accurately de-

scribe the patterns of wave propagation, and some-

times diffraction patterns dominate. The pattern 

depends on the relat ionship between the wave-

length, the dimensions of the obstacle (or open-

ing) that l im i t wave propagation, and the dis-

tance to the plane of observation. This relation-

ship can be formulated as follows: if the obstacle 

or opening can be seen from the points of the 

screen on which we observe the shadow at an 

angle greater than the angle at which the entire 

wavelength can be seen from the distance equal 

to the width of the obstacle, then the diffraction 

does not strongly distort the picture of the rays. 

I n the resulting formula ^ » — , a is the size 

of the opening, R is the distance to the screen on 

which the shadow is observed, and X is the wave-
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length. I f the angles are comparable, however, 

or if the first angle is less than the second, i.e., 

jjr <C ~ , diffraction plays decisive role, and the 

rays cannot be described as l inear. I n optics the 

angles are normally comparable since visible 

l ight wavelengths are very smal l (from 0.7 j.im 

for the colour red to 0.4 for violet). But at 

great distances from a th in opening or wire, the 

first angle may be less than the second. 

Light diffraction patterns can be observed with 

a very simple setup. Make an opening 0.1-0.2 m m 

in diametre in a piece of foil wi th a sharp needle, 

and glue the foil to a piece of cardboard in which 

an opening has been made. The cardboard is 

needed only to prevent the interference of the 

l ight source (this can be a desk lamp) . Attach the 

cardboard to a mount , and project a magnified 

image of the filament of the bu lb onto it wi th 

a lens capable of close-ups from 4 to 5 cm away. 

Make certain that part of the image falls on the 

opening in the foil. The l ight cone that forms 

behind the screen can easily be projected onto a 

mat plate of glass or detected wi th the human 

eye (if the l ight cone catches the eye, the opening 

wi l l seem dazzling). Now place objects for ob-

servation about 0.5 m away from the opening; 

our observations of the diffraction pattern wi l l be 

made another 0.5 m behind' the object. Make 

your observations through a weak magnifying 

glass or a lens capable of close-ups from 2 to 5 cm 

that has been fixed to a mount . Stand so that the 

whole lens is brightly i l luminated . The diffrac-

tion pattern can be clearly seen against a bright 

background. 
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Figure 129 shows the setup, wi th which all the 

diffraction patterns reproduced in this article 

were obtained. W e used an optical bench in the 

experiments. This is not mandatory, of course, 

although the diffraction patterns can lie moved 

Fig. 129: 

(1) l a m p ; (2 )Jpro jec t ing lens , (-J) p o i n t d i a p h r a g m 
w i t h a l i g h t sc reen , (4) c l a m p for d i f f r ac t i ng 
ob jec t s , (5) l i gh tp roof t u b e , (6) p h o t o g r a p h i c 
c a m e r a w i t h o u t o b j e c t i v e 

more easily into the centre of the field of vision 

if you have supports wi th screw displacements. 

The shadow from a straight-edged, opaque 

screen can be provided with the blade of a safety 

razor. Use two such razor blades, to make a slit 

0.3-1 mm wide. A piece of wire up to 1 mm in 

diametre wi l l give you the diffraction pattern 
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of a narrow screen. The t ip of a needle also 

produces an interesting pattern. 

To produce a bright spot i n the centre of a 

shadow cast by a round object use a steel bal l 

bearing 2-4 m m in diametre. At tach the bal l to 

a glass plate wi th a drop of glue. (The glue should 

not be visible beyond the contour of the bal l , 

and the surfaces of the plate and the ba l l should 

be clean.) When the glue is dry, fix the plate in 

the setup. Adjust the plate un t i l the shadow of the 

bal l is in the centre of the field of vision. I n 

this position both the outer diffraction circles 

and the spot in the centre surrounded by dark 

and bright circles wi l l be clearly visible. 

The diffraction patterns can easily be photo-

graphed wi th a camera from which the objective 

lens has been removed. The shadow of the object 

should be projected directly onto the film in the 

camera. To increase the resolution and the num-

ber of diffraction fringes, the opening, which 

serves as a l ight source, should be covered wi th 

a l ight filter. A red filter works best since there 

are many red rays in the spectrum of l ight 

from a conventional electric bu lb . Normal ly , an 

exposure of 5 or 10 seconds is sufficient. To 

avoid overexposure the camera and setup should 

be connected by a tube wi th a black l in ing. 

Displacement of the l ight source would cause 

displacement of the shadow, and hence the spot 

itself. Therefore, if you use a slide instead of a 

point source in your setup, every transparent 

point on the slide wi l l cast its own, sl ightly 

displaced shadow of the bal l wi th its own bright 

spot. As a result, the outer diffraction circles 

w i l l diffuse, and an image of the slide w i l l 
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appear in the centre of the shadow. The ba l l wi l l 

act as a lens. The image of Planck's constant in 

Fig. 130 was obtained in this way. The photo-

graph was made wi th a bal l 4 m m in diametre. 

The height of the symbol K is 1 m m . The original 

slide was made wi th contrast film by photo-

F i g . 130 

graphing a letter drawn in I nd i a ink on white 

paper. 

I f you dr i l l an opening about 2 m m in diametre 

in a th in t inp late , you can see how the diffraction 

pattern of the opening changes at various dis-

tances. Cover the opening wi th a l ight filter, and 

move closer to i t . From a distance of 1-2 m , you 

should be able to see black circles i n the centre 

of the pattern w i th a magni fy ing glass. As you 

move closer, the circles change to dark rings, 

diffusing towards the boundary of the shadow. 

The number of dark rings, inc luding the dark 

spot i n the centre, is determined by the difference 
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in the distances travelled by the central ray and 

the ray from the edge of the opening. This fact 

can be used to determine the l ight wavelength if 

the opening diametre, the distance from the 

l ight source to the opening, and the distance 

from the opening to the image are known. The 

plane of the image can be determined by placing 

Fig. 131 

(») 1 trim in d i a m e t r e . R j - -H2 = - 0 . 5 m. lied f i l t e r . The opening 
shows two zones. Black spo t in t h e cen t r e ; (b) 1 mm in di-
a m e t r e . K^—H2=0.5 m . Blue f i l t e r . The open ing shows a l m o s t 
t h r ee zones; (c) 1.5 mm in d i ame t r e . J i i=U2=() . f> m. Red f i l t e r . 
The open ing shows s l i g h t l y m o r e t h a n f o u r zones 

a needle in front of the magni fy ing glass and 

moving it un t i l it resolves sharply against the 

background of the diffraction pattern. W e wi l l 

discuss the derivation of the calculation formula 

later. 

You can observe the beaut i ful variat ion in the 

colour of diffraction circles in white l ight . These 

colours, which do not resemble spectral colours, 

are called complementaries. They can be observed 

when one spectral band is missing from the com-

plete spectrum of white l ight . I n this case, for 

example, when green is represented by a dark 

centre spot, the remaining parts of the spectrum, 

i.e. red-orange and violet, make the centre of 
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the picture look purple. The absence of red 
produces the complementary green-blue colour, 
and so on. Figure 131 shows examples of diffrac-
tion patterns from a round opening. 

W h y do we have a black spot in the centre of 
the pattern, which the light rays seem to reach 
without interference? Let us return to our obser-
vation of waves on the surface of a pond. Consider 
two stones thrown simultaneously into the pond 
and the resulting two systems of waves. Imagine 
points on the surface reached by the crests of the 

Time 

Fig. 132 Fig. 133 

two wave systems simultaneously. W i t h t ime 
the same points wi l l be reached by the troughs, 
and the waves wi l l become larger (Fig. 132). 
This enhancement wi l l occur at points that lie 
at various distances from the wave sources. The 
waves wi l l also be enhanced at points that lie 
an entire wavelength, two wavelength, and so 
on from the source. When the crests of one wave 
system meet the troughs of another, the waves 
dampen one another (Fig. 133). This interference 
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plays the decisive role in forming diffraction 

patterns. 

Every point in space that is pierced by a l ight 

wave can also be regarded as a source of a second-

ary spherical wave (Fig. 134). I f the l ight passes 

through a round opening, we can replace the 

l ight source wi th secondary l ight sources distri-

buted over the area of the opening. A l l these 

sources w i l l fluctuate in concord wi th the first 

wave to reach the opening. The ampl i tude of the 

fluctuations at a point behind the screen is cal-

culated as the sum of the fluctuations caused at 

the observation point by each secondary source. 

Waves from different sources travel different dis-

tances and can enhance or dampen one another 

when combined. 

Let us observe changes in the ampl i tude of 

oscillations around the axis of a round opening 

i l l uminated by a point source. W h e n the distance 

to an observation point is very great in com-

parison wi th the diametre of the opening, the 

waves from all secondary sources travel almost 

the same distance and enhance one another when 

Fig. 134 
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they reach the observation point . As we move 

closer to the opening, the secondary waves from 

the sources at the edge wi l l lag significantly 

behind waves travel l ing from the centre, and 

the resulting ampl i tude wi l l decrease. W h e n the 

ray from the edge to the observation point be-

comes an entire wavelength longer than the 

centra] ray, the oscillations are completely 

dampened (compensated), and a black spot ap-

pears in the centre of the diffraction pattern. 

I f we move even closer to the opening, we disturb 

the dampening of oscillations on the axis, and 

the centre becomes bright again. This t ime the 

dampening w i l l take place at a distance from the 

axis, and the centre of the diffraction pattern wi l l 

be surrounded by a dark ring. When the ray on 

the edge lags two wavelengths behind the central 

ray, the dampening at the axis reoccurs. The 

diffraction pattern in this case wi l l be a bright 

spot wi th a dark centre and one dark r ing. 

The dark spot i n the centre wi l l appear periodi-

cally as we move closer to the opening. W e can 

tel l how many oscillations occurred at the axis 

by counting the number of dark rings. The same 

phenomenon can be seen if we change the radius 

of the opening rather than the distance to i t . 

These explanations are enough for you to derive 

a formula to determine wavelength. 

Good luck! 



This selection of interesting articles from the popular 
science journal Kvant is a collection of fairly simple but 
challenging and instructive experiments that require little 
space and the simplest possible equipment. Designed to 
illustrate the laws of physics, the book includes lessons on 
growing crystals, studying the oscillations of a pendulum 
and experimenting with light using a gramophone record 
or a ball bearing. Suitable for secondary school students 
and teachers. 
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